北京自噬Beclin1

时间:2022年08月07日 来源:

恶性中流严重危害人类健康,研究表明,在多种人类中流细胞中存在自噬活性的改变,正常情况下自噬可以保持细胞稳态,清chu中流细胞内折叠异常的蛋白和功能异常的细胞器如线粒体,抑制细胞应激反应,从而降低中流的发生率;然而当中流形成,自噬可降解中流细胞内变性的蛋白质和细胞器,为其生长提供营养及能量,促进中流生长。麦冬的有效成分之一麦冬皂苷B处理肺ai细胞,可观察到大量细胞质空泡,透射电子显微镜下可见自噬特征性的形态学改变,同时LC3-II的表达增加,PI3K/Akt通路受到抑制,而流式细胞仪检测结果表明,麦冬皂苷B不能诱导细胞凋亡,表明麦冬皂苷B可通过抑制PI3K/Akt通路引起H157和H460细胞自噬,而非凋亡途径。通过融合表达RFP-GFP-LC3B蛋白,可以非常有效地追踪自噬过程。北京自噬Beclin1

线粒体自噬水平降低可以引起或加重心力衰竭。Shires和Gustafsson通过构建不同的心力衰竭模型,证实了线粒体自噬水平降低可加重心脏损伤。另有研究表明,PINK1沉默或敲除的小鼠易受到再灌注损伤及压力负荷过载的影响而导致心力衰竭。另一方面,线粒体自噬水平适度增强有助于心力衰竭患者心肌细胞功能的恢复。He等研究发现,小鼠心肌细胞中Parkin表达上调可促进线粒体自噬并抑制衰老所致的心脏功能障碍,延长寿命。然而,线粒体自噬水平过度增强可导致线粒体大量凋亡,影响细胞能量供给,加速细胞死亡,从而加重心力衰竭。因此,线粒体自噬与心力衰竭的关系取决于线粒体自噬的程度。山西细胞自噬电镜检测线粒体自噬在维持心肌细胞和大血管细胞的存活和正常功能方面起着不可替代的作用。

自噬体形成依赖于一系列ATG蛋白在蛋白泛素化过程中的共价结合。ATG5和ATG12被誉为自噬的“中心”,为自噬体形成所必需,它们被发现还参与了细胞凋亡的调控。ATG5可以被Caplains剪切,造成ATG5N端片段以一种未知的机制转位到线粒体,与抗凋亡蛋白Bcl-xL结合,促发线粒体细胞色素C释放,诱导凋亡。研究发现在一系列不同凋亡刺激下,ATG12不但是caspase唤醒所必需的,它还可通过结合方式中和Bcl-2、Mcl-1的抗凋亡能力。进一步实验则发现,ATG12是因为具备和Bcl-2、Mcl-1结合的BH3样结构域而具有促凋亡功能。

电镜作为自噬检测的金指标。由于自噬体属于亚细胞结构,普通光镜下观察不到自噬体的形成,因此,直接观察自噬体需在透射电镜下。Phagophore的特征为:新月状或杯状,双层或多层膜,有包绕胞浆成分的趋势。自噬体(AV1)的特征为:双层或多层膜的液泡状结构,内含胞浆成分,如线粒体、内质网、核糖体等。自噬溶酶体(AV2)的特征为:单层膜,胞浆成分已降解。WB检测标志物LC3/Atg8、p62/SQSTM1、Lamps、Atg5、Atg14和Beclin-1;

组织蛋白酶Cathepsin活力检测; 

IF检测自噬潮autophagic flux。 自噬紊乱可能在类风湿性关节炎、多发性硬化等其他自身免疫病的发生中起到一定作用。

自噬(Autophagy),即细胞“吃掉自己”的过程,是一种细胞自我降解和循环利用胞内组分的过程。常见的自噬过程有三种类型:巨自噬、微自噬和分子伴侣介导的自噬。在现代的生物学中,“自噬”的概念是由比利时生物化学家克里斯汀·德·迪夫(ChristiandeDuve)在研究溶酶体功能时首先提出的。尽管克里斯汀·德·迪夫因发现和阐明溶酶体的功能获得了1974年诺贝尔生理和医学奖,细胞自噬的具体机理直到20世纪90年代才由日本生物学家大隅良典(YoshinoriOhsumi)阐明。大隅良典也因对细胞自噬的研究获得了2016年诺贝尔生理和医学奖。自噬异常与多种病理过程如神经退行性疾病、代谢疾病等都有密切关系。山西细胞自噬电镜检测

自噬功能不全的细胞易于坏死,但是坏死组织产生的细胞因子(包括部分生长因子)反而会促进病变的生长。北京自噬Beclin1

高蛋白饮食可以通过抑制NIX介导的线粒体自噬途径加速巨噬细胞凋亡,从而促进线粒体自噬;真核起始因子2α通过抑制Parkin诱导的线粒体自噬途径加重高脂血症引起的动脉粥样yin化炎症;在主动脉内皮细胞中,氧化型低密度脂蛋白可以导致核受体NR4A1过表达,从而引起Parkin介导的线粒体自噬过度激huo,导致内皮细胞因线粒体数量过度减少、细胞能量供给不足而凋亡,从而加重动脉粥样yin化。综上所述,在动脉粥样yin化的发病过程中,线粒体自噬扮演关键角色,有望通过调节线粒体自噬来减缓甚至逆转动脉粥样yin化的进展,可能成为zhiliao动脉粥样yin化的新靶点。北京自噬Beclin1

信息来源于互联网 本站不为信息真实性负责