辽宁自噬

时间:2022年02月24日 来源:

自噬与疾病:1、自噬与代谢:自噬能清理不正常构型的蛋白质,并消化受损和多余的细胞器,是真核细胞中普遍存在的降解/再循环系统。在细胞新陈代谢、结构重建、生长发育中起着重要作用。在饥饿和新生儿早期,自噬作用明显加强,自噬体明显增多。2、自噬与肿细胞:细胞自噬与细胞的关系十分复杂,目前尚未完全阐明。一方面,正常细胞自噬增强,可表现出阻止肿细胞发生的功能;与此相反,阻止细胞自噬有潜在的致瘤可能。另一方面,肿细胞也可通过增强细胞自噬来对抗由缺氧、代谢产物、诊治药物诱导的应激反应。溶酶体是自噬完成的关键场所。辽宁自噬

强度比较大的间歇训练时,身体会进入一个低氧环境,激烈运动使氧气被心肺活动优先利用,这会让细胞无法得到氧气而死亡,称为凋亡。凋亡是件好事,这也是人体所必需的。一开始执行比较强的度的有氧运动时,让一些细胞凋亡,但是你身体开始习惯比较强的度的运动后,就会细胞会开始适应,并开始透过自噬作用来取代凋亡。比较强的度间歇性训练在五周后触发更多的自噬,比较强的度间歇训练虽然在短期内对自噬没有太大的帮助,但是只要坚持下来,就会对自噬有帮助。辽宁自噬微自噬在运输胞内物质、维持胞内稳态以及增强细胞对饥饿的耐受能力方面有许多功能。

微自噬(Microautophagy)是溶酶体(在酵母和植物中为液泡)直接向内弯曲折叠,包裹胞内物质并降解的过程。大多数微自噬过程都是非选择性的。饥饿、缺乏氮源或雷帕霉素处理可以诱发细胞出现微自噬。微自噬在运输胞内物质、维持胞内稳态以及增强细胞对饥饿的耐受能力方面有许多功能。例如,由脂质降解引发的微自噬可以调节溶酶体膜的脂质构成,微自噬也可以起到将糖原运输到溶酶体中的作用。除了巨自噬和微自噬,分子伴侣介导的自噬(Chaperone-mediatedAutophagy)是细胞降解和回收蛋白质的另一种方式。在这一过程中,特定蛋白(如错误折叠的蛋白)首先被分子伴侣(如hsc70)识别和标记,然后一起被溶酶体表面的受体蛋白(如LAMP-2A)识别,继而直接转运至溶酶体内部并被消化。分子伴侣介导的自噬发生在许多组织中,其主要功能包括长期饥饿时为细胞供能,调节代谢通路,清理无用蛋白质,帮助T细胞活化等。自噬基因的突变可以导致遗传病,自噬机制受到的扰乱还与病症有关。

自噬已被证明与许多疾病的发生和进展密切相关,这些疾病包括神经退行性疾病(帕金森病,阿尔茨海默病等)、病症、自身免疫病等。常见的自噬过程包括巨自噬、微自噬和分子伴侣介导的自噬。巨自噬又可以进一步细分为非选择性自噬和选择性自噬。选择性自噬是细胞器的自噬,如线粒体自噬、过氧化物酶体自噬、脂质自噬、叶绿体自噬、核糖体自噬等。巨自噬是细胞清理受损细胞器和无用蛋白的主要途径。在这一过程中,细胞接受自噬诱导信号后,在细胞质中首先形成一个个小的类似双层脂质体的吞噬泡,然后吞噬泡不断延伸,并将受损细胞器或蛋白包裹起来,形成自噬体。自噬体在细胞质中被转运至溶酶体并较终与溶酶体融合,在溶酶体的酸性环境中,自噬体里的物质被各种酶降解。在自噬的情况下,荧光显微镜下RFP-GFP-LC3B则聚集在自噬体膜上,以黄色斑点的形式表现出来。

自噬的特性:自噬是细胞消化掉自身的一部分,即self-eating,初一看似乎对细胞不利。事实上,细胞正常情况下比较少发生自噬,除非有诱发因素的存在。这些诱发因素许多,也是研究的热门。既有来自于细胞外的(如外界中的营养成分、缺血缺氧、生长因子的浓度等),也有细胞内的(代谢压力、衰老或破损的细胞器、折叠错误或聚集的蛋白质等)。由于这些因素的经常性存在,因此,细胞保持了一种比较低的、基础的自噬活性以维持自稳。自噬过程比较快,被诱导后8min即可观察到自噬体(autophagosome)形成,2h后自噬溶酶体(autolysosome)基本降解消失。这有利于细胞快速适应恶劣环境。细胞自噬过程中损坏的蛋白或细胞器被双层膜结构的自噬小泡包裹后,送入溶酶体或液泡中进行降解并循环利用。辽宁自噬

自噬是吞噬自身细胞质蛋白或细胞器并使其包被进入囊泡,并与溶酶体融合形成自噬溶酶体,降解内容物的过程。辽宁自噬

自噬双标系统的工作原理为:未发生自噬的细胞及含有自噬体的细胞中,由于mCherry与GFP共同表达,细胞呈现黄色荧光。当自噬体与溶酶体融合形成自噬溶酶体后,酸性的溶酶体环境使酸敏感的GFP荧光淬灭,而mCherry不受影响,进而使自噬溶酶体呈现红色荧光。因此,红色荧光可指示自噬溶酶体形成的顺利程度。红色荧光越多,绿色荧光越少,则从自噬体到自噬溶酶体阶段流通得越顺畅。反之,自噬体和溶酶体融合被阻止,自噬溶酶体进程受阻。辽宁自噬

信息来源于互联网 本站不为信息真实性负责