海南微流道增材制造微纳加工系统
QuantumXshape是Nanoscribe推出的全新高精度3D打印系统,用于快速原型制作和晶圆级批量生产,以充分挖掘3D微纳加工在科研和工业生产领域的潜力。作为2019年推出的头一台双光子灰度光刻(2GL®)系统QuantumX的同系列产品,QuantumXshape提升了3D微纳加工能力,即完美平衡精度和速度以实现高精度增材制造,以达到比较高水平的生产力和打印质量。作为一款真正意义上的全能机型,该系统是基于双光子聚合技术(2PP)的专业激光直写系统,可为亚微米精度的。QuantumXshape可实现在6英寸的晶圆片上进行高精度3D微纳加工。这种效率的提升对于晶圆级批量生产尤其重要,这对于科研和工业生产领域应用有着重大意义。总而言之,该系统拓宽了3D微纳加工在多个科研领域和工业行业应用的更多可能性(如生命科学、材料工程、微流体、微纳光学、微机械和微电子机械系统(MEMS)等)。 更多增材制造技术想要了解,请咨询Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司。海南微流道增材制造微纳加工系统
增材制造技术使用能源有激光、电子束、紫外光等,采用的材料有树脂、塑料、金属、陶瓷、蜡等,因其采用的成型方法和使用的成型材料以及依靠的凝结热源不同,现在主要分为四类:分层实体制造(LOM)工艺技术;立体光刻(SLA)工艺技术;选择性激光烧结(SLS)工艺技术;熔融沉积成型(FDM)工艺技术。无模具快速自由成型,制造周期短,小批量零件生产成本低。增材制造技术因为只需要有加工原料和加工设备就能够进行产品加工,不需要机械加工和工装模具,可以实现一次成型,节约了零件的不同工序加工和组装消耗的时间,进行单件小批量的生产时,增材制造的成本低。传统加工制造需要原料采购、准备,并且加工过程中还需要不同工序的轮换加工,加工完后还需要进行零件的组装等等,而这无形之间延长了产品的生产周期,同时也不经济。 海南微流道增材制造微纳加工系统Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司为您浅析增材制造技术在制造业中的特点与应用。
Nanoscribe是一家德国双光子增材制造系统制造商,2019年6月25日,南极熊从外媒获悉,该公司近日推出了一款新型的机器QuantumX。该新的系统使用双光子光刻技术制造纳米尺寸的折射和衍射微光学元件,其尺寸可小至200微米。根据Nanoscribe的联合创始人兼CSOMichaelThiel博士的说法,“Beer's定律对当今的无掩模光刻设备施加了强大的限制,QuantumX采用双光子灰度光刻技术,克服了这些限制,提供了前所未有的设计自由度和易用性,我们的客户正在微加工的前沿工作。“Nanoscribe成立于卡尔斯鲁厄理工学院,现在在上海设有子公司,在美国设有办事处。该公司在财务和技术上获得了蔡司的大力支持,蔡司是德国历史非常悠久,规模比较大的光学系统制造商之一。纳米标记系统基于双光子吸收,这是一种分子被激发到更高能态的过程。为了使用双光子工艺制造3D物体,使用含有单体和双光子活性光引发剂的凝胶作为原料。将激光照射到光敏材料上以形成纳米尺寸的3D打印物体,其中吸收的光的强度比较高。PhotonicProfessionalGT是Nanoscribe此前推出的一款产品,在科学研究中得到了广的应用,并在哈佛大学纳米系统中心,加州理工学院,伦敦帝国理工学院,苏黎世联邦理工大学和庆应义塾大学使用。
Nanoscribe作为一家纳米,微米和中尺度高精度结构增材制造**,一直致力于开发和生产3D 微纳加工系统和无掩模光刻系统,以及自研发的打印材料和特定应用不同解决方案。Nanoscribe成立于 2007 年,是卡尔斯鲁厄理工学院 (KIT) 的衍生公司。在全球前列大学和创新科技企业的中,有超过2,500 多名用户在使用我们突破性的 3D 微纳加工技术和定制应用解决方案。 Nanoscribe 凭借其过硬的技术背景和市场敏锐度奠定了其市场的主导地位,并以高标准来要求自己以满足客户的需求。 Nanoscribe 将在未来进一步扩大产品组合实现多样化,以满足不用客户群的需求。Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司为您简述增材制造技术的应用。
Nanoscribe的Photonic Professional GT2双光子无掩模光刻系统的设计多功能性配合打印材料的多方面选择性,可以实现微机械元件的制作,例如用光敏聚合物,纳米颗粒复合物,或水凝胶打印的远程操控可移动微型机器人,并可以选择添加金属涂层。此外,微纳米器件也可以直接打印在不同的基材上,甚至可以直接打印于微机电系统(MEMS)。双光子灰度光刻技术可以一步实现真正具有出色形状精度的多级衍射光学元件(DOE),并且满足DOE纳米结构表面的横向和纵向分辨率达到亚微米量级。由于需要多次光刻,刻蚀和对准工艺,衍射光学元件(DOE)的传统制造耗时长且成本高。而利用增材制造即可简单一步实现多级衍射光学元件,可以直接作为原型使用,也可以作为批量生产母版工具。如需了解增材制造技术发展趋势和应用,请咨询Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司。海南微流道增材制造微纳加工系统
Nanoscribe在中国的子公司纳糯三维科技(上海)有限公司邀您了解增材制造工艺的分类。海南微流道增材制造微纳加工系统
相较于传统生产方式,增材制造能有效降低生产成本与进入门槛。举例来说,制造业应用广的CNC 数控机床加工在全球范围内存在人才短缺问题,且其必备的专业操作人员是沉重的人力成本来源,这也是中小型生产厂家难以与规模较大的竞争对手匹敌的重要原因。 与之形成对比的增材制造技术,对于专业操作人员的要求则不那么高,因为增材设备更加简单、编程相对容易,也因此长期来说操作成本更低。此外,增材制造突破生产的地域限制,您可以在瑞士进行编程设计后,发到国内或其他地区生产,而这在需要诸多工装夹具的传统制造领域是难以实现的。传统制造中更换加工零件既耗时又费力。举例而言,CNC数控机床经常需要花费数十分钟到几个小时才能完成零件的替换。而增材制造可以一次成型多个产品,不同制造作业间可真正达到无缝替换,而每次替换的时间至多可缩短到几分钟内。海南微流道增材制造微纳加工系统
上一篇: 重庆微纳米无掩膜光刻多少钱
下一篇: 江苏高分辨率Nanoscribe工艺