国内investigator双光子显微镜成像视野

时间:2024年09月27日 来源:

基因编码的荧光探针可用于在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。双光子显微镜(2PM)可以对钙离子传感器和谷氨酸传感器进行亚细胞分辨率的成像,从而测量不透明脑深部的活动。成像膜的电压变化可以直接反映神经元的活动,但神经元活动的速度对于常规的2PM来说太快了。目前,电压成像主要由宽视场显微镜实现,但其空间分辨率较差,且只能在浅深度成像。因此,为了以高空间分辨率成像不透明脑中膜电压的变化,需要将成像速率提高2PM。面向模块输出端的子脉冲序列可视为从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成空间分离和时间延迟的聚焦阵列。然后,该模块被集成到一个带有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是重复频率为1MHz的920nm激光器。FACED模块可以产生80个脉冲焦点,脉冲时间间隔为2ns。这些焦点是虚拟源的图像。虚光源越远,物镜处的光束尺寸越大,焦点越小。光束可以沿Y轴比沿X轴更好地填充物镜,从而在X轴上产生0.82m和0.35m的横向分辨率。显微成像技术包含:双光子显微镜、宽场荧光显微镜、共聚焦显微镜、全内反射荧光显微镜等多种成像方式。国内investigator双光子显微镜成像视野

国内investigator双光子显微镜成像视野,双光子显微镜

光学显微镜和电子显微镜本质的区别在于,光学显微镜:用的是可见光电子显微镜:用的是高频电子射波有什么区别,在于一个基本的原理,光的衍射。。。光波是一个有趣的东西,其中有一项,如果物体的体积小于光的波长,光一般可以绕过去,不发生明显变化。也就是说,有这个物体和没这个物体,在这种情况下,光是不会发生明显改变的。可见光的波长(肉眼):380~780纳米,也就是,如果比380纳米还要小的东西,用光学显微镜,无论你放大多少倍,也是看不见的。因为光绕过去了。。。光的衍射为了克服这个问题,科学家用波长更短的光去照射物体,也是就被观测物。比如10纳米级的光,这样,就能看到我们用肉眼无论如何都看不见的东西。这就是电子显微镜多说一句,光速是不变的。光速=频率×波长。波长越短,频率越大。。频率越大,光波的能量越大。这就是为什么电子显微镜的功率越大,能看到的东西越小。颜色取决于物体能反射光的波长的长短当你看到的物体小于较小可见光的波长,那它就是没有颜色的。。。因为颜色是肉眼对于可见光频率在大脑中的投影。。。。所以只能把他们统一变为黑白。。。没有颜色不是透明的意思,它们不是肉眼可见颜色的定义中包含的。国内ultima2PPLUS双光子显微镜双光子显微镜能够进行光裂解、光转染和光损伤等光学操纵。

国内investigator双光子显微镜成像视野,双光子显微镜

光学显微镜从1590年发明以来,不断发展,促进生命科学日新月异的发现,帮助人类逐层打开生命本质的大门。同时,生命科学的发展不断给光学显微镜提出新的要求,促使成像理论和技术持续更新迭代。科学进入21世纪,人们已经不满足于在体外研究细胞和组织,需要能够更真实地探索生命,在体内实时观察细胞的发生和变化。此时,双光子显微镜进入了科学家的视野。在高光子密度的情况下,荧光分子可以同时吸收两个长波长的光子,然后发射出一个波长较短的光子,其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的(图1)。如烟酰胺腺嘌呤二核苷酸(NADH),在单光子激发时,在波长为350nm光的激发下发出450nm荧光;而在双光子激发时,可采用700nm的激发光得到450nm荧光。

微型化双光子荧光显微成像改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、睡眠等自然行为条件下,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议、美国明显神经科学家加州大学洛杉矶分校的AlcinoJSilva教授在评述中写道,“从任何一个标准来看,这款显微镜都了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测。双光子显微镜的原理是什么?

国内investigator双光子显微镜成像视野,双光子显微镜

随着技术的发展,双光子显微镜的性能得到不断地优化,结合它的特点,大致可以分成深和活两方面的提升。要想让激发激光进入更深的层面,大致可从两个方面入手,装置优化与标本改造。关于装置优化,我们可以把激光束变得更细,使能量更加集中,就能让激光穿透更深。关于标本,其中影响光传播的主要是物质吸收和散射,解决这个问题,我们需要对样本进行透明化处理。一种方法是运用某种物质将标本浸泡,使其中的物质(主要是脂质)被破坏或溶解。另一种方法是运用电泳将脂质电解,让标本“透明度”提高。双光子显微镜是结合了双光子技术和扫描共聚显微镜的一种新型荧光显微镜。进口激光双光子显微镜商家电话

如果已经有了飞秒光,就可以几套双光子显微镜共享一台,只需分光即可。国内investigator双光子显微镜成像视野

双光子显微镜为什么穿透能力强?因为组织对可见光区域的较强吸收和散射带来两个严重的问题第1个是激发光的减弱,第2个就是另外就是由于物镜本身光的光学特性,单光子激发的背景较强,所以才有共聚焦系统提高成像的分辨率因为组织对可见光区域的较强吸收和散射带来两个严重的问题第1个是激发光的减弱,第2个就是另外就是由于物镜本身光的光学特性,单光子激发的背景较强,所以才有共聚焦系统提高成像的分辨率刚好双光子在这两点具有很大的优势上面的内容基本在谈到双光子优势都会相对说明,在实际操作中成像的深度和样品的关系很大,双光子成像利用高亮度的荧光标记材料,已经有做到mm级别的穿透深度国内investigator双光子显微镜成像视野

信息来源于互联网 本站不为信息真实性负责