应用RTK天线技术指导

时间:2024年05月13日 来源:

    RTK工作原理基准站建在已知或未知点上:基准站接收到的卫星信号通过无线通信网实时发给用户:用户接收机将接收到的卫星信号和收到基准站信号实时联合解算,求得基准站和流动站间坐标增量(基线向量)。站间距30公里,平面精度1-2厘米综述高精度的GPS测量必须采用载波星位观测值,RTK定位技术就是基于载波星位观测值的实时动态定位技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。在RTK作业模式下,基准站通过数据链将其观测值和测站坐标信息-起传送给流动站。流动站不仅通过数据链接收来自基准站的数据,还要采集GPS观测数据,并在系统内组成差分观测值进行实时处理,同时给出厘米级定位结果,历时不足一秒钟。流动站可处于静止状态,也可处于运动状态:可在固定点上先进行初始化后再进入动态作业,也可在动态条件下直接开机,并在动态环境下完成整周模糊度的搜索求解。在整周未知数解固定后,即可进行每个历元的实时处理,只要能保持四颗以上卫星*星位观测值的跟踪和必要的几何图形,则流动站可随时给出厘米级定位结果。RTKLIB是日本东京海洋大学(TokyoUniversitlyofMarineScienceandTechnol0gy)开发的一个开放源程序包。 RTK天线-提高工作效率,节省时间,提升工作满意度。应用RTK天线技术指导

应用RTK天线技术指导,RTK天线

从GPS网络TK技术工作的机制可以看出,一个完整的GPS网络RTK系统都包含几个组成部分:基准站网、系统控制中心(数据处理中心)以及数据通讯线路"。基准站网中包括了长久固定的基准站和用户所用的流动站。一般情况下,基准站网中至少要包含3个长久性的基准站,流动站则根据用户的需要自由设置。系统控制中心或者说数据处理中心则是整个网络系统中****的部分。数据通讯线路则是连接基准站与控制中心、控制中心与用户部分等必不可少的部分。数据处理中心的主要任务就是根据基准网点的定位信息采用一定的算法实时计算流动站的误差改正。因此基准站的布设必然影响流动站的定位效率与精度。广东相位中心RTK天线安装专为高效工作而生,RTK天线助您轻松应对各种挑战。

应用RTK天线技术指导,RTK天线

高精度RTK定位系统采用***支持北斗三号卫星信号体制的双频RTK高精度定位模块SKG122GRSKG123NR,该模块同时支持BDS B11+B1C+B2a,GPS/QZSSL1+L5,Galleo E1+E5a多系统多频点,内部集成双频RTK高精度定位算法,能提供厘米级高精度位置服务。可通过配置可以使模组变为移动站。能满足专业定位的严格要求与个人消费需要。该系统整合人员信息管理、历史轨迹回放、电子围栏、智能巡检、电子作业票、智能预警、应急救援等功能,可满足企业安全生产管理的多项需求,帮助企业守好安全防护线。

GPS测高方法

1、等值线图法从高程异常图或大地水准面差距图分别查出各点的高程异常或大地水准面差距,然后分别采用下面两式可计算出正常高和正高。在采用等值线图法确定点的正常高和正高时要注意以下几个问题:(1)注意等值线图所适用的坐标系统,在求解正常高或正高时,要采用相应坐标系统的大地高数据。(2)采用等值线图法确定正常高或正高,其结果的精度在很大程度上取决于等值线图的精度。

2、大地水准面模型法地球模型法本质上是一种数字化的等值线图,目前国际上较常采用的地球模型有OSU91A等。不过可惜的是这些模型均不适合于我国。3、拟合法(1)基本原理所谓高程拟合法就是利用在范围不大的区域中,高程异常具有一定的几何相关性这一原理,采用数学方法,求解正高、正常高或高程异常(2)注意事项适用范围上面介绍的高程拟合的方法,是一种纯几何的方法,因此,一般*适用于高程异常变化较为平缓的地区(如平原地区),其拟合的准确度可达到一个分米以内。对于高程异常变化剧烈的地区(如山区),这种方法的准确度有限,这主要是因为在这些地区,高程异常的已知点很难将高程异常的特征表示出来。


RTK天线-提升工作效率,节省时间,开启高效工作新篇章。

应用RTK天线技术指导,RTK天线

    差分技术,通过同步观测值间求差,消除观测值间的相关性误差。目前,这3种措施都得到了很大的发展。本文只讨论第三种:同步观测求差法。同步观测法可以消除和削弱系统误差中的相关误差,例如:接收机间求一次差分可以消除与卫星有关的误差;利用双频接收机和同步观测求差可以减弱电离层折射以及对流层折射的影响;通过在卫星间求一次差分来消除接收机的钟差等。但是,在不同观测站间同步观测求差的方法存在一个致命的缺点:它的有效作用距离是有限的。只有当两个或若干个同步观测的观测站的距离不大于20km时,上述GPS观测误差具有强相关性,同步观测求差法可以很好的将其消除。但当距离较大时,这些误差的相关性就明显减弱;且对于对流层、电离层等的残差项,将随着距离的增加而增大,从而也导致难以正确的确定整周模糊度。因此,同步观测求差法得到结果的精度也明显降低。如当两站间的距离大于50km时,一般的GPS或者RTK的单历元解只能达到分米级的精度”。因此,为了获得高精度的定位结果就必须采取一些特殊的方法和措施。于是GPS网络RTK技术就产生了。 强大技术支持,RTK天线助您提升工作效率和准确性。广东测试板卡RTK天线应用

RTK天线的定位精度高,可满足各种测量需求。应用RTK天线技术指导

    与卫星信号传播有关的误差,主要包括大气折射误差和多路径效应。1)电离层传播误差:GPS卫星信号在通过电离层时,受到这一介质弥散特性的影响,使得信号传播路径发生变化,因而产生观测误差。电离层对信号传播的影响,主要取决于电子总量和信号的频率。为了减弱电离层的影响,可以利用双须观测法、电高层模型和同步观测求差法进行修正。2)对流层传播误差:对流层折射对观测值的影响,可以分为千分量和湿分量两部分,千分量主要与大气的温度和压力有关;而湿分量主要与信号传播路径上的大气湿度和高度有关,这种影响可以利用地面的大气资料计算。湿分量影响虽然不大,但是很难用物理参数进行描述。为了消除和减弱对流层折射的影响,可以采用类似消除电离层影响的方法。3)多径效应:GPS接收机天线除了接收直接来自卫星的信号外,还可能接收到天线周围地物一次或多次反射的卫星信号,从而使观测值偏离真值产生误差,这种误差被称为多径效应。多径效应对测相伪距的影响可达厘米级,有时甚至造成卫星信号的失锁,使得载波观测量产生周跳。由于多径效应产生的机理,与各自接收机所处的环境有关,因此不可能采用同步观测求差法进行消除。 应用RTK天线技术指导

信息来源于互联网 本站不为信息真实性负责