准确SEM扫描电镜人造石墨颗粒表面特性分析检测

时间:2024年05月11日 来源:

在动力锂离子电池中,正极材料是关键的部分,其成本占居锂离子电池的40%左右。正极活性物质作为LIBs的重要原料,决定了LIBs的体积能量密度、循环表寿命、稳定性、安全性等重要性能,相关的电化学性能指标与正极材料的主元素含量、晶体结构、颗粒度大小、颗粒形状等密切相关。

使用SEM可以对正极材料及其前驱体的单颗粒形貌,颗粒分布情况等进行表征,并结合能谱对原料成分和杂质进行检验。目前锂离子电池正极材料以钻酸锂,磷酸铁锂,锰酸锂,镍酸锂,多元材料为主,其中三元材料包括NCM、NCA,根据过渡金属元素比例有不同的规格。正极材料一般由对应的金属化合物和碳酸锂通过固相法、共沉淀法、离子交换法等方法合成。选择的制备工艺,烧结时的投料、温度,烧结后的研磨情况等会影响终得到的正极材料颗粒的尺寸和形貌。

SEM扫描电镜技术通过高分辨率的图像获取和分析,可以对电池材料的微观结构和表面特征进行准确的检测。我们公司致力于分析测试先进材料,立足中国制造,为全国客户提供专业快捷全方面先进材料整体解决方案。 SEM扫描电镜在电池材料检测方面有着广泛的应用。我们的检测团队由资质深厚工程师组成,拥有丰富的经验。准确SEM扫描电镜人造石墨颗粒表面特性分析检测

准确SEM扫描电镜人造石墨颗粒表面特性分析检测,SEM扫描电镜

隔膜在锂离子电池中起到防止正负极物理接触,提供锂离子传输微孔通道的作用。锂离子电池隔膜的孔径尺寸、多孔程度、分布均一性、厚度直接影响电解液的扩散速率和安全性,对电池的性能有很大影响。如果隔膜的孔径太小,锂离子的透过性受限,影响电池中锂离子的传输性能,使得电池内阻增大;如果孔径太大,锂枝晶的生长可能会刺穿隔膜,造成短路或起爆等事故

使用SEM可以观察隔膜的孔径尺寸和分布均匀性,还可以对多层和有涂覆隔膜的截面进行观察,测量隔膜厚度。传统的商业化隔膜多为聚烯烃材料所制备的单层微孔膜,包括聚乙烯(PE)和聚丙烯(PP)。从生产工艺上分,隔膜可以分为干法(熔融拉伸)和湿法(热致相分离)两种制备方法。作为一种先进的测试工具,SEM扫描电镜在电池材料测试中有着明显的应用优势。不仅能够实现材料表面形貌的高清晰度成像,还能通过能谱分析等功能对材料进行深入细致的特性分析,从而解决了用户在测试过程中对精确、全方面数据的需求。

我们的团队由从事检测行业10年专业技术领队,团队成员100%硕博学历,平均新能源材料检测领域从业3年以上。他们的专业知识和丰富经验可以提供高质量的测试服务。 经验丰富SEM扫描电镜硬碳微区元素分析组成测试ppmppb我们的团队专注于电池材料的微观分析,确保数据结果准确可靠,满足客户需求。

准确SEM扫描电镜人造石墨颗粒表面特性分析检测,SEM扫描电镜

由于电池材料的观察尺度在亚微米即几百纳米到几微米的范围,普通光学显微镜无法满足观察的需求,而更高放大倍数的电子显微镜则经常被用来观察电池材料。

扫描电子显微镜(SEM)是1965年发明的较现代的细胞生物学研究工具,主要是利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。扫描电子显微镜可以观察到锂电材料的粒径大小和均匀程度,以及纳米材料自身的特殊形貌,甚至通过观察材料在循环过程中发生的形变我们可以判断其对应的循环保持能力好坏。

作为新能源电池材料测试领域的专业团队,我们拥有80余台大中型仪器设备,总价值超2亿元,涵盖了电池材料测试的各个方面。这些仪器可以满足各种不同的测试需求,包括成分分析、物理性质测试、化学性能评估等等。此外,这些仪器设备每年都会进行定期维护和升级,以确保其测试结果的准确性和可靠性。

负极极片表面包覆层分析

客户需求

在电池制造工艺中,表面包覆层不仅关乎电池的性能提升,还能够防止电极与电解质的反应,从而延长电池的使用寿命。然而,由于表面包覆层非常薄,制备和测试分析变得更加困难。因此,需要采用先进的技术和设备来检测其元素分布和形貌。

解决方案

FIB透射制样技术常用于制备细微样品,可以在非常小的切片尺寸下进行高质量的切割和观察,通过FIB制备样品,我们可以观察到表面包覆层的微观结构和元素分布。而SIEM作为表面形貌分析利器,可以在很小的尺寸范围内观察样品的表面形貌和细节。配合使用TEM这种更高分辨率的显微镜,可以提供更细致的样品形貌和元素分布。

检测结果

FIB+SEM极片 SEM扫描电镜在电池材料检测中能够发现微观级别的问题,为客户解决生产中的难题。

准确SEM扫描电镜人造石墨颗粒表面特性分析检测,SEM扫描电镜

质子交换膜形貌(厚度)观察

客户需求

在电池使用过程中,若出现电压异常、阻抗异常、输出功率大幅降低等问题时,则会使质子交换膜的形貌出现厚度不均匀或涂层剥落等情况,进而引发电池内部化学反应的不稳定,影响电池的性能和寿命,因而对质子交换膜形貌的观察和分析是值得且必须要做的。

解决方案

为了确定问题的根源,我们可以采用质子交换膜形貌(厚度)观察的方法。先用离子束研磨(CP)对极片、粉末和隔膜的截面切割,在原子层面上对样品进行表面剥离,从而获得干净整洁、组织清晰、没有划痕及杂质干扰和应力损伤层的截面样品。后用扫描电子显微镜(SEM)观察质子交换膜的形貌、颗粒尺度、涂层、元素掺杂情况等信息,两种方法结合可以初步判断电池的质量和寿命。

检测结果

形貌:氩离子束切割(CP)+SEM SEM扫描电镜在电池材料检测中有着应用优势,能够为客户提供全角度的分析服务。高质量SEM扫描电镜硅碳负极微区元素分析组成测试ppmppb

SEM扫描电镜检测可以帮助您分析电池材料中的微观磨损和腐蚀行为。准确SEM扫描电镜人造石墨颗粒表面特性分析检测

在负极材料的研究中,SEM技术同样发挥着不可替代的作用。负极材料是电池中另一个重要的组成部分,其性能直接影响到电池的循环稳定性和安全性。通过SEM技术,研究者可以观察到负极材料在充放电过程中的形貌变化,进而分析材料的稳定性。此外,SEM技术还可以观察到负极材料表面的SEI(固体电解质界面)膜的形成和演变,为改善SEI膜的性能提供了直观的证据。除了对正负极材料的研究外,SEM技术还在电解质和隔膜等电池组件的研究中发挥着重要作用。通过SEM技术,研究者可以观察到电解质和隔膜的微观结构、孔隙率和润湿性等关键性能参数,进而分析这些参数对电池性能的影响。此外,SEM技术还可以结合其他技术(如原子力显微镜、透射电子显微镜等)对电池组件进行更多方面的研究,为电池性能的提升提供更为多方面的支持。准确SEM扫描电镜人造石墨颗粒表面特性分析检测

信息来源于互联网 本站不为信息真实性负责