黑龙江纳米力学测试方法
特点:能同时实现SEM/FIB高分辨成像和纳米力学性能测试,力学测量范围0.5nN-200mN(9个数量级),位移测量范围0.05nm-21mm(9个数量级),五轴(X,Y,Z,旋转,倾斜)闭环控制保证样品和微力传感探针的精确对准,能在SEM/FIB较佳工作距离下实现高分辨成像(可达4mm)以及FIB切割和沉积,五轴(X,Y,Z,旋转,倾斜)位移记录器实现样品台上多样品的自动测试和扫描,导电的微力传感探针可有效减少荷电效应,能够通过力和位移两种控制模式实现各种力学测试,例如拉伸、压缩、弯曲、剪切、循环和断裂测试等,电性能测试模块能够实现力学和电学性能同步测试(样品座配备6个电极)导电的微力传感探针可有效减少荷电效应,实现力学性能测试与其他SEM/FIB原位分析手段联用,如EDX、EBSD、离子束沉积和切割,兼容于SEM本身的样品台,安装和卸载快捷方便。纳米力学测试可以用于评估纳米材料的热力学性能,为纳米材料的应用提供参考依据。黑龙江纳米力学测试方法
Berkovich压头是纳米压痕硬度计中较常用的。它可以加工得很尖,而且几何形状在很小尺度内保持自相似,适合于小尺度的压痕实验。目前,该类压头的加工水平:端部半径50nm,典型值约40nm,中心线和面的夹角精度为J=0.025°。在纳米压痕硬度测量中,Berkovich压头是一种理想的压头。优点包括:易获得好的加工质量,很小载荷就能产生塑性,能减小摩擦的影响。Cube-corner压头因其三个面相互垂直,像立方体的一个角,故取此名称。压头越尖,就会在接触区内产生理想的应力和应变。目前,该种压头主要用于断裂韧性(fracture toughness)的研究。它能在脆性材料的压痕周围产生很小的规则裂纹,这样的裂纹能在相当小的范围内用来估计断裂韧性。锥形压头圆锥具有尖的自相似几何形状,从模型角度常利用它的轴对称特性,纳米压痕硬度的许多模型均基于圆锥压痕。由于难以加工出尖的圆锥金刚石压头,它在小尺度实验中很少使用。原位纳米力学测试系统纳米力学测试可以解决纳米材料在微纳尺度下的力学问题,为纳米器件的设计和制造提供支持。
微纳米材料力学性能测试系统可移动范围:250mm x 150mm;步长分辨率:50nm;Encoder 分辨率:500nm;较大移动速率:30mm/S;Z stage。可移动范围:50mm;步长分辨率:3nm;较大移动速率:1.9mm/S。原位成像扫描范围。XY 方向:60μm x 60μm;Z 方向:4μm;成像分辨率:256 x 256 像素点;扫描速率:3Hz;压头原位的位置控制精度:<+/-10nm;较大样品尺寸:150mm- 200mm。纳米压痕试验:测试硬度及弹性模量(包括随着连续压入深度的变化获得硬度和弹性模量的分布)以及断裂韧性、蠕变、应力释放等。 纳米划痕试验:获得摩擦系数、临界载荷、膜基结合性质。纳米摩擦磨损试验 :评价抗磨损能力。在压痕、划痕、磨损前后的SPM原位扫描探针成像: 获得微区的形貌组织结构。
应用举例:纳米纤维拉伸测试,纳米力学测试单轴拉伸测试是纳米纤维定量力学分析较常见的方法。用Pt-EBID将纳米纤维两端分别固定在FT-S微力传感探针和样品架上,拉伸直至断裂。从应力-应变曲线计算得到混合纳米纤维的平均屈服/极限拉伸强度为375MPa/706Mpa,金纳米纤维的平均屈服/极限拉伸强度为451MPa/741Mpa。对单根纳米纤维进行各种机械性能的定量测试需要通用性极高的仪器。这类设备必须能进行纳米机器人制样和力学测试。并且由于纳米纤维轴向形变(延长)小,高位移分辨率和优异的位置稳定性(位置漂移小)对于精确一定测量是至关重要的。随着纳米技术的不断发展,纳米力学测试技术也在不断更新换代,以适应更高精度的测试需求。
一般力学原理包括:。能量和动量守恒原理;。哈密顿变分原理;。对称原理。由于研究的物体小,纳米力学也要考虑:。当物体尺寸和原子距离可比时,物体的离散性;。物体内自由度的多样性和有限性。。热胀落的重要性;。熵效应的重要性;。量子效应的重要性。这些原理可提供对纳米物体新异性质深入了解。新异性质是指这种性质在类似的宏观物体没有或者很不相同。特别是,当物体变小,会出现各种表面效应,它由纳米结构较高的表面与体积比所决定。这些效应影晌纳米结构的机械能和热学性质(熔点,热容等)例如,由于离散性,固体内机械波要分散,在小区域内,弹性力学的解有特别的行为。自由度大引起热胀落是纳米颗粒通过潜在势垒产生热隧道及液体和固体交错扩散的理由。小和热涨落提供了纳米颗粒布朗运动的基本理由。在纳米范围增加了热涨落重要性和结构熵,使纳米结构产生超弹性,熵弹性(熵力)和其它新弹性。开放纳米系统的自组织和合作行为中,结构熵也令人产生很大兴趣。纳米力学测试是一种用于研究纳米尺度材料力学性质的实验方法。重庆高精度纳米力学测试供应商
纳米力学测试技术为纳米材料在航空航天、汽车制造等领域的应用提供了有力支持。黑龙江纳米力学测试方法
除了采用弯曲振动模式进行测量外,Reinstadtler 等给出了探针扭转振动模式测量侧向接触刚度的理论基础。通过同时测量探针微悬臂的弯曲振动和扭转振动,Hurley 和Turner提出了一种同时测量各向同性材料杨氏模量、剪切模量和泊松比的方法。Killgore 等提出了利用软探针的高阶模态进行AFAM 定量化测试的方法,可以使探针施加在样品上的力减小到10 nN,极大地扩展了这一方法的应用范围。Killgore 和Hurley提出了一种新的脉冲接触共振的方法,将接触共振与脉冲力模式相结合,不只能测量探针的接触共振频率和品质因子,还可以测量针尖样品之间黏附力的大小。黑龙江纳米力学测试方法
上一篇: 湖北圆锥形金刚石压头价格
下一篇: 海南新能源纳米力学测试技术