南京太阳能储能

时间:2022年07月01日 来源:

通过在所述底座1通过定位销与减压板3底部开设的销孔紧固连接,且减压板3两侧与固定板14卡合,降低减压板3上方托盘4及上部结构在周转运输中产生的负载压力,通过在减压板3的上方通过限位块固定安装有托盘4,托盘4的内部通过泡沫缓冲板8放置有储能电池10,增加周转运输时储能电池10放置于托盘4中的平稳,通过在伸缩板12的一侧连接有分隔板9,且分隔板9的上方通过限位块固定安装有托盘4,方便操作人员根据实际情况合理分配空间,增加周转的效率。进一步,底座1下方的四角通过螺栓连接有脚轮支座7,起到支撑减压的作用,避免底座1上方结构的压力损毁万向脚轮6,脚轮支座7底部与脚轮支架2之间通过滚轴转动连接,且脚轮支架2通过连接轴与万向脚轮6固定连接,可以对装置进行多方向移动,提高了整体工作性能,脚轮支架2的一侧通过铰链铰接有卡合角5,避免周转车停放时出现偏移滑动。进一步,伸缩板12顶部的一侧边角通过铰链活动连接有推车把15,方便操作人员推拉周转车,且推车把15与伸缩板12平面成角度,有利于提高操作员推拉周转车时的舒适程度。进一步,伸缩板12一侧的板壁上开设有垂直分布均匀的开口槽13,增加装置的实用性,且开口槽13的槽口长度与伸缩板12的长度保持一致。本实用新型提供的具有阶梯式储能电池的变电站储能设备。南京太阳能储能

提高了电流控制精度,更好的满足负荷需求。(5)外环检测与控制由并联/并网控制柜完成,消除了储能变流器分别采样及外环计算误差的不均衡;并联/并网控制柜进行功率、电压外环控制及总电流pi控制,各并联储能变流器进行内环电流控制,无论是并网还是离网,各并联变流器均可视为电流源,提高电流均分精度;(6)各并联储能变流器引入分流系数,可在人机界面进行单独设定,改变各并联变流器负荷分担比例;各储能变流器获取到的电流参量均相同,在并联变流器数量发生变化时,系统可自动调节均流,便于系统扩展;(7)本发明提出了基于多种气体传感器融合的电池箱内电池故障早期预警技术,构建了电池soc-温度-多气体浓度数学模型,解决单一气体传感器采样易受电池箱内密封材料挥发及环境影响所造成的误报、漏报问题,提高了电池箱内灭火响应速度及成功率;实现了电池故障的早期预警、早期处置,增强了储能电池系统的安全性。电池管理系统采用电池电压、充放电电流、温度及故障产气浓度等多种参数综合判断电池当前状态,并对各参数的历史数据进行分析,通过建立的soc-温度-气体浓度的数学模型,对电池故障进行预测,并通过滤波算法排除采样噪声干扰。南京太阳能储能保证系统稳定。光伏电站系统中,光伏输出功率曲线与负荷曲线存在较大差异。

每个电池串由n个电池单体或模块串联而成。此外,在电池系统成组过程中常用成组设计原则是:电池模块中电池单体的串/并联个数以便于管理和更换为前提,同时兼顾电池管理系统中对应设备接口数目进行成组;电池串中电池模块的串联个数以电池串的端电压设计要求而定;LCBS中电池串的并联个数由BESS的容量设计要求、冗余度及运行模式等因素而定。大容量电池储能系统成组方式示意图2)功率转换系统PCS是一种由电力电子变换器件构成的装置,它连接着电池系统和交流电网,是BESS与外界进行能量交换的关键组成部分。PCS作为BESS的**部分,其主要功能包括:一是两种不同工作模式下(并网模式、孤网模式)对电池系统的充放电功能,并实现两种工作模式的切换;二是通过控制策略实现BESS的四象限运行,为系统提供双向可控的有功、无功功率,实现系统有功、无功功率平衡;三是通过相关控制策略实现系统高级应用功能,如黑启动、削峰填谷、功率平滑、低电压穿越等;四是根据PCS拓扑结构(如单级AC/DC、双级AC/DC+DC/DC、单级并联、双级并联、级联多电平结构等),通过相关控制策略实现对电池系统电压和荷电状态的均衡管理等。总之,PCS作为BESS中**重要的组成部分。

在采样参数数据异常时根据模型识别算法进行特征识别,输出电池故障类型及位置。如充放电时电池极柱处温度过高,其他位置电池电压、温度正常,则应该是极柱端子连接松动导致阻抗过大,极柱处发热所致,此时如温度超过60℃,可输出极柱温度一级报警,开启风扇并将充放电倍率限定在,如温度进一步升高到70℃以上,则输出温度二级报警,开启风扇同时禁止充放电并延时切断接触器。另外,通过三类气体历史数据拟合出每种气体的浓度变化曲线及其在产气总量中的占比情况,并根据电池soc及温度变化情况,采用滤波算法排除干扰,通过已建立的电池soc-温度-气体浓度的数学模型,输出电池故障级别并预测发展趋势,由此解决单一气体阈值法所造成的漏报、误报及预警滞后问题。电池soc-温度-气体浓度的数学模型的建立方法具体如下:采用离线参数辨识法对某一类型的电池进行热失控产气测试,测试其在不同soc及温度环境下产生多种气体的浓度数据和产气占比数据,分别得出soc-多气体曲线和温度-多气体曲线,利用matlab仿真软件的多项式拟合功能将上述曲线拟合为多阶函数,得到电池soc-温度-气体浓度的数学模型,并完成模型的参数辨识;根据测试实际情况对模型参数对应故障程度进行标定。目前解决光伏电站对电网影响的途径是提高电网灵活性或为并网光伏电站配置储能装置。

每个单元外壳的位于两侧**外侧的侧面上分别固定有提手。本实用新型的有益效果是,本实用新型提供的具有阶梯式储能电池的变电站储能设备,合理设计了储能设备中各个的储能电池的结构,并对单个储能电池侧向进行抽风散热,同时当需要组合堆叠时,两个储能电池可配队组合,内部风道也相应配对连通,形成整体的侧向抽风散热,提高散热,减少热量在底部和顶部的堆积。附图说明下面结合附图和实施例对本实用新型进一步说明。图1是本实用新型**优实施例的结构示意图。图2是本实用新型**优实施例的剖视图。图中1、左侧面2、右侧面3、提手4、隔板5、前侧面6、u型槽7、风扇8、通风口。具体实施方式现在结合附图对本实用新型作进一步详细的说明。这些附图均为简化的示意图,*以示意方式说明本实用新型的基本结构,因此其*显示与本实用新型有关的构成。如图1和图2所示的一种具有阶梯式储能电池的变电站储能设备,是本实用新型**优实施例,包括储能箱体。所述储能箱体内分布有若干个储能电池,所述的储能电池包括单元外壳,所述的单元外壳呈阶梯状结构,所述阶梯状结构从下至上具有3层,位于底层的单元外壳内则对应推入固定有3个电池组。至导热基座的间距大于或等于散热翅片组的底面至导热基座的间距。南京太阳能储能

且所述导热基座对应于储能箱体凹设有油脂凹槽。南京太阳能储能

   本实用新型属于储能系统领域,特别涉及一种电池组的安全储能系统。背景技术:目前,电池组一般通过电池储能箱进行存放和使用,通过电池储能箱对电池组进行一定的保护作用。但是,当多个电池储能箱同时在工作状态时,电池组工作产生大量的热量,而且由于两相邻的电池储能箱箱体贴合接触,箱体内的热量通过箱体向外传递并汇集在两箱体之间,热量难以充分扩散,造成局部高温,极易损坏箱体内部的电池组。技术实现要素:发明目的:为了克服现有技术中存在的不足,本实用新型提供一种电池组的安全储能系统,能够快速的对热量进行扩散,保证电池组的安全稳定。技术方案:为实现上述目的,本实用新型的技术方案如下:一种电池组的安全储能系统,包括基座、封盖、电池储能箱和散热组件,两组所述电池储能箱间距设置在基座的上方,且所述封盖盖设在两组所述电池储能箱的上方,两组所述电池储能箱、基座、封盖之间形成具有两端开口的散热通道,在所述封盖上沿散热通道的长度方向设置有至少一组散热组件,且所述散热组件对应于散热通道设置。进一步的,所述电池储能箱为包含内空腔的箱体结构。南京太阳能储能

浙江瑞田能源有限公司总部位于浙江省温州瓯江口产业集聚区灵华路217号标准厂房7号楼3层(自主申报),是一家一般项目:新能源原动设备制造;新能源原动设备销售;电池制造;电池销售;光伏设备及元器件制造;光伏设备及元器件销售;变压器、整流器和电感器制造;智能输配电及控制设备销售;发电机及发电机组制造;发电机及发电机组销售;太阳能发电技术服务;新材料技术研发;货物进出口;技术进出口(除依法须经批准的项目外,凭营业执照依法自主开展经营活动)。的公司。浙江瑞田能源有限作为一般项目:新能源原动设备制造;新能源原动设备销售;电池制造;电池销售;光伏设备及元器件制造;光伏设备及元器件销售;变压器、整流器和电感器制造;智能输配电及控制设备销售;发电机及发电机组制造;发电机及发电机组销售;太阳能发电技术服务;新材料技术研发;货物进出口;技术进出口(除依法须经批准的项目外,凭营业执照依法自主开展经营活动)。的企业之一,为客户提供良好的新能源电池,锂电池,储能电池,叉车电池。浙江瑞田能源有限不断开拓创新,追求出色,以技术为先导,以产品为平台,以应用为重点,以服务为保证,不断为客户创造更高价值,提供更优服务。浙江瑞田能源有限创始人王文远,始终关注客户,创新科技,竭诚为客户提供良好的服务。

上一篇: 台州pack储能模组

下一篇: 台州叉车储能

热门标签
信息来源于互联网 本站不为信息真实性负责