梅州氨氮去除怎么样

时间:2022年08月20日 来源:

相对于有机物来讲,污水中氨氮的脱除是比较麻烦的,生化法比较经济,但对中高浓度的氨氮废水不适合;物化法可以处理高浓度的氨氮废水,但往往是多种方法串联组合,且运行费用昂贵,有些还会产生二次污染。对工业废水来说,由于氨氮浓度高,宜采用将高浓度氨氮废水集中物化处理后再和其他废水混合,然后采用常规生化处理的组合工艺,这样可适当降低工程投资和建成后的运行费用。生产单位应首先对生产工艺进行改变,能不使用含氮原料的尽量不用,如必须使用应尽量减少泡冒滴漏,从上游减少氨氮的排放量;对污水脱氮处理工艺的选择应根据企业的实际情况,综合考虑,设计的工艺流程应首先进行小试,待试验证实后再开始设计和施工。氨氮毒性与池水的pH值及水温有密切关系。梅州氨氮去除怎么样

反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。全程硝化反硝化工程应用中主要有AO、A2O、氧化沟等,是生物脱氮工业中应用较为成熟的方法。全程硝化反硝化法具有效果稳定、操作简单、不产生二次污染、成本较低等优点。废水中,氨氮浓度过高对硝化过程也产生抑制作用,所以在处理高浓度氨氮废水前应进行预处理,使氨氮废水浓度小于500mg/L。传统生物法适用于处理含有有机物的低浓度氨氮废水,如生活污水、化工废水等。梅州工业废水氨氮去除氨氮常用来测定氨的两个近似灵敏度的比色方法是经典的纳氏试剂法和苯酚-次氯酸盐法。

土壤灌溉是把低浓度的氨氮废水(<50mg/L)作为农作物的肥料来使用,既为污灌区农业提供了稳定的水源,又避免了水体富营养化,提高了水资源利用率。西红柿罐头废水与城市污水混合并经氧化塘处理至11mg氨氮/L后用于灌溉,氨氮可完全被吸收;马铃薯加工厂废水也用于喷淋灌溉,经测定25mg氨氮/L的排放水中有75%的氨氮被吸收。氨氮污水的处理技术都有各自的优势与不足:生物法处理氨氮污水较稳定,但一般要求氨氮浓度在400mg/L以下,总氮去除率可达70%~95%,是目前国内外运用较多的一种方法。生物脱氮新工艺处理高浓度氨氮废水效率比较高,实际投入运行的有短程硝化反硝化工艺和厌氧氨氧化工艺,但它们的工艺条件要求严格,特别是对溶解氧的要求更为严格,在实际应用中很难控制;其他新型脱氮技术也只是在实验研究阶段。

短程硝化反硝化过程不经历硝酸盐阶段,节约生物脱氮所需碳源。对于低C/N比的氨氮废水具有一定的优势。短程硝化反硝化具有污泥量少,反应时间短,节约反应器体积等优点。但短程硝化反硝化要求稳定、持久的亚硝酸盐积累,因此如何有效抑制硝化菌的活性成为关键。厌氧氨氧化是在缺氧条件下,以亚硝态氮或硝态氮为电子受体,利用自养菌将氨氮直接氧化为氮气的过程。研究温度和PH值对厌氧氨氧化生物活性的影响,结果表明,该微生物的较佳反应温度为30℃,pH值为7.8。研究厌氧氨氧化反应器处理高盐度、高浓度含氮废水的可行性。结果表明,高盐度明显抑制厌氧氨氧化活性,这种抑制具有可逆性。氨氮去除需要达到国家一级排放标准。

当硝化与反硝化在同一个反应器中同事进行时,称为同时消化反硝化(SND)。废水中的溶解氧受扩散速度限制在微生物絮体或者生物膜上的微环境区域产生溶解氧梯度,使微生物絮体或生物膜的外表面溶解氧梯度,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,产生缺氧区,反硝化菌占优势,从而形成同时消化反硝化过程。影响同时消化反硝化的因素有PH值、温度、碱度、有机碳源、溶解氧及污泥龄等。研究生活污水的处理,认为CODCr越高,反硝化越完全,TN去除效果越好。溶解氧对同时硝化反硝化的影响较大,溶解氧控制在0.5~2mg/L时,总氮去除效果好。同时硝化反硝化法节省反应器,缩短反应时间,能耗低,投资省,易保持pH值稳定。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。江门氨氮去除厂家电话

吹脱法需要注意如吹脱塔内经常结垢。梅州氨氮去除怎么样

氨气提是一个传质过程,即在高pH时,使废水与空气密切接触从而降低废水中氨浓度的过程。传质过程的推动力是空气中氨的分压与废水中氨的浓度相当的平衡分压之间的差。用具有大表面积的填充塔来达到气水间的密切接触。折点氯化法是将氯气通入废水中达到某一点,在该点时水中游离氯含量较低,而氨的浓度降为零。当氯气通入量超过该点时。水中的游离氯就会增多。因此该点称为折点.该状态下的氯化称为折点氯化。折点氯化法除氨的机理为氯气与氨反应生成了无害的氮气。处理时所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化1mg氨氮有时需要9-10mg的氯气。梅州氨氮去除怎么样

信息来源于互联网 本站不为信息真实性负责