平台校准激光干涉仪测量

时间:2022年08月18日 来源:

电测量指示仪表的分类可分为:(1)按相别分:单相、三相三线、三相四线等。(2)按功能及用途分:有功电表、无功电表、比较大需量表、复费率电表、多功能电表、铜损表、铁损表等。(3)按工作原理分:感应式、电子式、机电式等。电力系统各类电表的技术要求(1)接入中注点绝缘系统的电能计量装置,应采用三相三线有功、无功电表。接入非中性点绝缘系统的电能计量装置,应采用三相四线有功、无功电表或3只感应式无止逆单相电表。(2)接入中性点绝缘系统的3台电压互感器,35kV及以上的宜采用Y/y方式接线;35kV以下的宜采用V/V方式接线。接入非中性点绝缘系统的3台电压互感器,宜采用Y0/y0方式接线。其一次侧接地方式和系统接地方式相一致。(3)低压供电,负荷电流为50A 及以下时,宜采用直接接入式电表;负荷电流为50A以上时,宜采用经电流互感器接入式的接线方式。(4)对三相三线制接线的电能计量装置,其2台电流互感器二次绕组与电表之间宜采用四线连接。对三相四线制连接的电能计量装置,其3台电流互感器二次绕组与电表之间宜采用六线连接。三坐标测量机和加工中心的校准。平台校准激光干涉仪测量

激光干涉仪

结构原理:普通电流互感器结构原理:电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于电源线路中,一次负荷电流(I1)通过一次绕组时,产生的交变磁通感应产生按比例减小的二次电流(I2);二次绕组的匝数(N2)较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电流比电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。广州模切尺寸激光干涉仪创建了一个 CMM演示器,用于显示由IDS3010执行的CMM中的位置检测。

平台校准激光干涉仪测量,激光干涉仪

按一次绕组对地运行状态分

一次绕组接地的电压互感器:单相电压互感器一次绕组的末端或三相电压互感器一次绕组的中性点直接接地;一次绕组不接地的电压互感器:单相电压互感器一次绕组两端子对地都是绝缘的;三相电压互感器一次绕组的各部分,包括接线端子对地都是绝缘的,而且绝缘水平与额定绝缘水平一致。

按磁路结构分

单级式电压互感器:一次绕组和二次绕组(根据需要可设多个二次绕组同绕在一个铁芯上,铁芯为地电位。我国在及以下电压等级均用单级式;串级式电压互感器:一次绕组分成几个匝数相同的单元串接在相与地之间,每一单元有各自独自的铁芯,具有多个铁芯,且铁芯带有高电压,二次绕组(根据需要可设多个二次绕组处在较为末一个与地连接的单元。我国在电压等级常用此种结构型式;组合式互感器:由电压互感器和电流互感器组合并形成一体的互感器称为组合式互感器,也有把与组合电器配套生产的互感器称为组合式互感器。

用连续空间函数来运算的光的波动理论,在描述纯悴的光学现象时,已被证明是十分潜能的,似乎很难用任何别的理论来替换。可是,不应当忘记,光学观测都同时间平均值有关,而不是同瞬时值有关,而且尽管衍射、反射、折射、色散等等理论完全为实验所证实,但仍可以设想,当人们把用连续空间函数进行运算的光的理论应用到光的产生和转化的现象上去时,这个理论会导致和经验相矛盾。关于黑体辐射,光致发光、紫外光产生阴极射线,以及其他一些有关光的产生和转化的现象的观察,如果用光的能量在空间中不是连续分布的这种假说来解释.似乎就更好理解。按照这里所设想的假设,从点光源发射出来的光束的能量在传播中不是连续分布在越来越大的空间之中,而是由个数有限的、局限在空间各点的能量子所组成,这些能量子能够运动,但不能再分割,而只能整个地被吸收或产生出来。测试齿条齿轮传动系统中,行星齿轮机械参数的长期稳定性。

平台校准激光干涉仪测量,激光干涉仪

用作高分辨率光谱仪。法布里-珀luo gan涉仪等多光束干涉仪具有很尖锐的干涉极大,因而有极高的光谱分辨率,常用作光谱的精细结构和超精细结构分析。历史上的作用。19世纪的波动论者认为光波或电磁波必须在弹性介质中才得以传播,这种假想的弹性介质称为以太。人们做了一系列实验来验证以太的存在并探求其属性。以干涉原理为基础的实验极为精确,其中极有名的是菲佐实验和迈克耳孙-莫雷实验。1851年,A.H.L.菲佐用特别设计的干涉仪做了关于运动介质中的光速的实验,以验明运动介质是否曳引以太。1887年,A.A.迈克耳孙和E.W.莫雷合作利用迈克耳孙干涉仪试图检测地球相对jue dui静止的以太的运动。对以太的研究为A.爱因斯坦的狭义相对论提供了佐证。在三个直径为400、315和200μm的金属圆筒上进行轮廓测量。珠海高精度激光干涉仪

传感器头适用于极端环境:  低温和高温(比较高450°C),UHV兼容性,  强辐射(高达10MGy)和高磁场。平台校准激光干涉仪测量

高精度。目前半导体工艺的典型线宽为0.25μm,并正向0.18μm过渡,2009年的预测线宽是0.07μm。如果定位要求占线宽的1/3,那么就要求10nm量级的精度,而且晶片尺寸还在增大,达到300mm。这就意味着测量定位系统的精度要优于3×10的-8次方,相应的激光稳频精度应该是10的-9次方数量级。

高速度。目前加工机械的速度已经提高到1m/sec以上,上世纪80年代以前开发研制的仪器已不适应市场的需求。例如惠普公司的干涉仪市场大部分被英国Renishaw所占领,其原因是后者的速度达到了1m/sec。 平台校准激光干涉仪测量

信息来源于互联网 本站不为信息真实性负责