福建品质射频功率放大器技术

时间:2022年05月26日 来源:

    图10为本发明实施例提供的可控衰减电路和输入匹配电路的示意图。具体实施方式对于窄带物联网(narrowbandinternetofthings,nb-iot)的终端(userequipment,ue)来说,射频前端系统中的射频功率放大器电路一般要求发射功率可调,当射频功率放大器电路之前射频收发器的输出动态范围有限时,就要求功率放大器增益高低可调节。在广域低功耗通信的应用场景中,对射频功率放大器电路的增益可调要求变得更突出,其动态范围要达到35~40db,并出现负增益的需求模式。例如,在窄带物联网通信对象之间距离近(nb-iot的终端距离基站很近)的情况下会出现负增益的需求。在应用中,一方面在射频功率放大器的电路设计中,可以降低功率增益,在不过度影响原有电路匹配的前提下,通过增强驱动级晶体管的负反馈;另一方面,可以在输入匹配电路中插入可控衰减电路的设计,这样对功率放大器的性能影响较小,降低增益的效果明显。下面介绍一种射频功率放大器电路,是在高增益模式的电路基础上,一般通过增强驱动级的负反馈来降低增益。图1a为相关技术中射频功率放大器电路的组成结构示意图,图1b为图1a的电路结构示意图,参见图1a和图1b,方案。射频功率放大器地用于多种有线和无线应用中,包括 CATV,ISM,WLL,PCS,GSM,CDMA 和 WCDMA 等各种频段。福建品质射频功率放大器技术

    图3中的自适应动态偏置电路的电路结构如图2所示。射频输入端rfin和射频输出端rfout之间设置有两个主体电路,每个主体电路包括激励放大器和功率放大器,激励放大器和功率放大器通过匹配网络连接。主体电路中的c04和c05构成激励放大器和功率放大器之间的匹配网络;第二主体电路中的c11和c12构成激励放大器和功率放大器之间的匹配网络。主体电路中的激励放大器与变压器t01的副边连接,第二主体电路中的激励放大器与第二变压器t03的副边连接。变压器t01的原边和第二变压器t03的原边连接,变压器t01的原边与第二变压器t02的原边之间还连接有电容c01。变压器t01、第二变压器t02和电容c01构成一个匹配网络。变压器t01的副边连接有电容c02,第二变压器t03的副边连接有电容c09。变压器t01的原边连接射频输入端rfin,第二变压器t03的原边接地。变压器t01原边与第二变压器t03原边的公共端连接自适应动态偏置电路的输入端rfin_h。主体电路中的功率放大器与第三变压器t02的原边连接,第二主体电路中的功率放大器与第四变压器t04的原边连接。第三变压器t02的副边与第四变压器t04的副边连接,第三变压器t02副边和第四变压器t04副边之间还连接有电容c16。广东EMC射频功率放大器生产厂家阻抗匹配,关系到功率放大器的稳定性、增益;输出功率、带内平坦度、噪声、谐波、驻波、线性等一系列指标 。

    第三变压器t02、第四变压器t04和电容c16构成一个匹配网络。第三变压器t02的原边连接有电容c07,第四变压器t04的原边连接有电容c14。第三变压器t02的副边连接射频输出端rfout,第四变压器t04的副边接地。每个主体电路中的激励放大器包括2个共源共栅放大器。如图3所示,主体电路的激励放大器中,nmos管mn01和nmos管mn03构成一个共源共栅放大器,nmos管mn02和nmos管mn04构成一个共源共栅放大器;第二主体电路的激励放大器中,nmos管mn09和nmos管mn11构成一个共源共栅放大器,nmos管mn10和nmos管mn12构成一个共源共栅放大器。在主体电路中,激励放大器源放大器的栅极与变压器的副边连接,激励放大器栅放大器的漏极通过电容与功率放大器的输入端连接。如图3所示,nmos管mn01的栅极和nmos管mn02的栅极分别与变压器t01的副边连接,nmos管mn03的漏极连接电容c04,nmos管mn04的漏极连接电容c05。nmos管mn03的漏极和nmos管mn04的漏极为主体电路中激励放大器的输出端。在第二主体电路中,激励放大器中源放大器的栅极与第二变压器的副边连接,激励放大器栅放大器的漏极通过电容与功率放大器的输入端连接。如图3所示,nmos管mn09的栅极和nmos管mn10的栅极分别与变压器t01的副边连接。

    LX5535+LX5530出现在AtherosAP96高功率版本参考设计中,FEM多次出现在无线网卡参考设计中。LX5518则是近年应用较多的一款高功率PA,与后文即将出现的SkyworksSE2576十分接近。毫不夸张地讲,MicrosemiLX5518与SkyworksSE2576占据了。LX5518的强悍性能如下图所示。RFaxisRFaxis是一家相对较新的射频半导体公司,成立于2008年1月,总部设于美国加州,专业从事射频半导体的设计和开发。凭借其独有的技术,RFaxis公司专为数十亿美元的Bluetooth、WLAN、、ZigBee、AMR/AMI和无线音频/视频市场设计的下一代无线解决方案。利用纯CMOS并结合其自身的创新方法和技术,RFaxis开发出全球射频前端集成电路(RFeIC)。相信读者一定了解,CMOSPA的巨大优势就是成本低,在如今WiFi设备价格如此敏感的环境下,这是RFaxis开拓市场的利器。从RFaxis的官方上可以看到已经有多款WiFiPA,但缺少汇总数据,用户很难快速选型。本文*给出RFaxis主推的RFX240的性能。RFICRFIC的全称是RFIntegratedCorp.,中文名称是朗弗科技股份有限公司,这家公司显得十分低调,在其官网上甚至找不到任何有关公司的介绍,笔者也是醉了。在通信和雷达系统率放大器是极其重要的组成部分主要参数有最大输出功率、效率、线性度和增益等。

4G/5G基础设施用RF半导体的市场规模将达到16亿美元,其中,MIMOPA年复合增长率将达到135%,射频前端模块的年复合增长率将达到119%。预计未来5~10年,GaN将成为3W及以上RF功率应用的主流技术。根据Yole预测,2017年,全球GaN射频市场规模约为,在3W以上(不含手机PA)的RF射频市场的渗透率超过20%。GaN在基站、雷达和航空应用中,正逐步取代LDMOS。随着数据通讯、更高运行频率和带宽的要求日益增长,GaN在基站和无线回程中的应用持续攀升。在未来的网络设计中,针对载波聚合和大规模输入输出(MIMO)等新技术,GaN将凭借其高效率和高宽带性能,相比现有的LDMOS处于更有利的位置。未来5~10年内,预计GaN将逐步取代LDMOS,并逐渐成为3W及以上RF功率应用的主流技术。而GaAs将凭借其得到市场验证的可靠性和性价比,将确保其稳定的市场份额。LDMOS的市场份额则会逐步下降,预测期内将降至整体市场规模的15%左右。到2023年,GaNRF器件市场规模达到13亿美元,约占3W以上的RF功率市场的45%。截止2018年底,整个RFGaN市场规模接近。未来大多数低于6GHz的宏网络单元实施将使用GaN器件,无线基础设施应用占比将进一步提高至近43%。RFGaN市场的发展方向GaN技术主要以IDM为主。丙类状态:在信号周期内存在工作电流的时间不到半个周期即导通角0 小于18度,丙类功放的优点是效率非常高。辽宁射频功率放大器维修

效率:功率放大器的效率除了取决于晶体管的工作状态、电路结构、负载 等因素外,还与输出匹配电路密切相关。福建品质射频功率放大器技术

    第七电感l7与第五电容c5组成谐振电路。在具体实施中,射频功率放大器还可以包括驱动电路。驱动电路的输入端可以接收输入信号,驱动电路的输出端可以输出差分信号input_p,驱动电路的第二输出端可以输出第二差分信号input_n。驱动电路可以起到将输入信号进行差分的操作,并对输入信号进行驱动,提高输入信号的驱动能力。参照图7,给出了本发明实施例中的又一种射频功率放大器的电路结构图。在图7中,增加了驱动电路。可以理解的是,在图1~图6中,也可以通过驱动电路来对输入信号进行差分处理,得到差分信号input_p以及第二差分信号input_n。在具体实施中,匹配滤波电路还可以包括功率合成变压器对应的寄生电容,功率合成变压器对应的寄生电容包括初级线圈与次级线圈之间的寄生电容,该寄生电容可以参与功率合成和阻抗转换。宽带变压器的阻抗变换主要受匝数比、耦合系数k值和寄生电感电容的影响,具有宽带工作的特点,相对于lc网络的阻抗变换网络更容易实现宽带的阻抗变换,因此适用于宽带功率放大器。应用于高集成度射频功率放大器的宽带变压器,因为受实现工艺的影响,往往k值比较小(k值较小会影响能量耦合,即信号转换效率变低),寄生电感电容影响比较大。福建品质射频功率放大器技术

能讯通信科技(深圳)有限公司是一家产 品 分 别 10KHz ~ 18GHz 频 带 有 百 余 种 射 频 功 放 产 品 ,10W、50W、100W、200W 及各类开关 LC 滤波器(高低通滤波器)宽带双定向耦合器系列产品。功放整机 。的公司,是一家集研发、设计、生产和销售为一体的专业化公司。能讯通信拥有一支经验丰富、技术创新的专业研发团队,以高度的专注和执着为客户提供射频功放,宽带射频功率放大器,射频功放整机,无人机干扰功放。能讯通信致力于把技术上的创新展现成对用户产品上的贴心,为用户带来良好体验。能讯通信始终关注自身,在风云变化的时代,对自身的建设毫不懈怠,高度的专注与执着使能讯通信在行业的从容而自信。

信息来源于互联网 本站不为信息真实性负责