贵阳拉锥光分路器

时间:2022年05月03日 来源:

光分路器按分光原理可以分为熔融拉锥型和平面波导型两种,熔融拉锥法就是将两根(或两根以上)除去涂覆层的光纤以一定的方法靠扰,在高温加热下熔融,同时向两侧拉伸,之后在加热区形成双锥体形式的特殊波导结构,通过控制光纤扭转的角度和拉伸的长度,可得到不同的分光比例。之后把拉锥区用固化胶固化在石英基片上插入不锈铜管内,这就是光分路器。这种生产工艺因固化胶的热膨胀系数与石英基片、不锈钢管的不一致,在环境温度变化时热胀冷缩的程度就不一致,此种情况容易导致光分路器损坏,尤其把光分路放在野外的情况更甚,这也是光分路容易损坏得较为主要原因。对于更多路数的分路器生产可以用多个二分路器组成。光分路器的三个重要的组成部分分别是光纤阵列的输入端、输出端和芯片。贵阳拉锥光分路器

分光器(即光分路器)是多个输入端和输出端的连接器件,可实现光网络系统中光信号的耦合、分支及分配等,是光纤链路中较重要组成部分。常用M×N来表示一个分光器有M个输入端和N个输出端,在现如今组网中使用的分光器一般都是1×2、1×4分光器。那么您知道分光器光衰多少?分光器如何选购?分光器如何使用?分光器的四大常用技术指标:波长、插入损耗、附加损耗以及分光比。其实分光器较主要的指标是分光器在特定的分光比下所产生的不同光衰,在不同分光比的条件下,分光器光衰也不会不同。那么分光器光衰如何计算呢?分光器光衰值=发送光功率+附加损耗+插入损耗+裸纤损耗。重庆1N 0.9微分钢管式分路器光分路器是在分光点上实现分光技术的无源功能器件。

光分路器所有零件采用的材料应具有防腐功能,其物理、化学性能必须稳定,并与相关连接材料如光缆护套、尾纤护套相容。为防止腐蚀和其他损害,这些材料还必须与其他设备中所常用的材料相容。光分路器使用的材料应符合RoHS标准,不能对环境产生污染,符合环境保护相关的标准。为适应三网合一、FTTx的推广,推出从局端一直到用户桌面的FTTX光配线网络解决方案。产品主要包括光缆交接箱,光缆分纤箱,分光分纤箱,光缆分线盒,光缆接头盒,光缆终端盒,冷接子,快速连接器,光纤跳线,配线光缆、皮线光缆、市内布线光缆、无源器件、线路辅助设施等。

光分路器的参数指标:隔离度。是指光纤分路器的某一光路对其他光路中的光信号的隔离能力。在所有指标中,隔离度对于光纤分路器的意义更为重大,在实际系统应用中往往需要隔离度达到40dB以上的器件,否则将影响整个系统的性能。另外光纤分路器的稳定性也是一个重要的指标,所谓稳定性是指在外界温度变化,其它器件的工作状态变化时,光纤分路器的分光比和其它性能指标都应基本保持不变,实际上光纤分路器的稳定性完全取决于生产厂家的工艺水平,不同厂家的产品,质量悬殊相当大。在实际应用中,本人也确实碰到很多质量低劣的光纤分路器,不只性能指标劣化快,而且损坏率相当高,作于光纤干线的重要器件,在选购时一定加以注意,不能光看价格,工艺水平低的光分路价格肯定低。光纤分路器是用来实现光波能量的分路与合路的器件。

分光器级联的确定:这个问题对于不同的运营商有不同的想法,例如对于广电来说,为了与其HFC网络匹配,理想的方法是采用不均分分光器(例如5%:95%1×2分光器),在光功率预算许可的情况下,通过多级级联达到覆盖大范围几千用户的目的。这种方法在理论上可行,但是更多的级联带来维护和管理的困难,首先光纤链路上有很多的分歧点(较多可能32或64或128),这些点除了分光器及熔接点的插入损耗以外,还会因多重反射增加系统噪声,致命的问题来自于前端分光器故障将导致后端大面积的业务中断。按生产工艺有平面波导型光纤分光器和熔融拉锥分光器。贵阳拉锥光分路器

光分路器的稳定性完全取决于生产厂家的工艺水平,不同厂家的产品,质量悬殊相当大。贵阳拉锥光分路器

分路器熔融拉锥型产品是将两根或多根光纤进行侧面熔接而成;平面波导型是微光学元件型产品,采用光刻技术,在介质或半导体基板上形成光波导,实现分支分配功能。这两种型式的分光原理类似,它们通过改变光纤间的消逝场相互耦合(耦合度,耦合长度)以及改变光纤纤半径来实现不同大小分支量,反之也可以将多路光信号合为一路信号叫做合成器。熔锥型光纤耦合器因制作方法简单、价格便宜、容易与外部光纤连接成为一整体,而且可以耐孚机械振动和温度变化等优点,成为市场的主流制造技术。贵阳拉锥光分路器

东莞市昊凯光电科技有限公司位于虎门镇怀德社区怀北路君诚科技大厦A栋11楼厂房,交通便利,环境优美,是一家生产型企业。公司是一家有限责任公司(自然)企业,以诚信务实的创业精神、专业的管理团队、踏实的职工队伍,努力为广大用户提供***的产品。以满足顾客要求为己任;以顾客永远满意为标准;以保持行业优先为目标,提供***的室内外光缆,光纤跳线,光纤活动连接器,衰减器。东莞市昊凯光电将以真诚的服务、创新的理念、***的产品,为彼此赢得全新的未来!

信息来源于互联网 本站不为信息真实性负责