快速跳频频综模块

时间:2023年10月08日 来源:

PDROxxxx系列极低相位噪声锁相介质振荡器输出比较高频率可达32GHz,可灵活的参考输入频率选择,具有极低相位噪声、低杂散、低功耗。PDROxxxx系列另一个重要特点在于它拥有内参考输入和外参考输入两种型号,这种紧灵活凑的设计可以更好的根据用户实际应用需求集成到各种高性能的微波组件、无线接收机、数字采集等系统中。外形尺寸mm:57.2×57.2×15.7(内参考型号35.7);功耗(V/mA):≤+12/300(输出功率为≥10dBm);参考信号输入功率(dBm),+3~+10APMSYN22 频综模块同时具有100MHz和1GHz两种频率的外部参考支持。快速跳频频综模块

快速跳频频综模块,频综

总部在瑞士的AnaPico公司近年来连续在市场上推出了多个系列的多通道、低噪、相参射频和微波信号源。已广泛应用于量子计算、雷达测试、波束赋形、卫星载荷和半导体器件测试等领域。APMS系列多通道模拟信号源覆盖从300kHz至6、12、20、33、40GHz的频率范围。相噪低至-125dBc/Hz(10GHz,20kHz频偏)。频率和幅度切换时间低至25μs。最大输出功率为18至25dBm。通道间高度相参、高度隔离。各通道的相位单立可调。支持相位记忆和相参切换。并支持各类模拟和脉冲调制、扫频、触发同步等各类信号源功能。每1U机架模块支持4个单独可调的信号源通道。多个模块间可通过产品自带的3GHz参考信号保持高度同步和相参。湖南快速跳频频综信号源APSYN420宽带频综低相位噪声:-108dBc/Hz@10GHz,100kHz。

快速跳频频综模块,频综

    频综是现代通信系统、雷达、测试设备的重要部件,提供高精度、高稳定性的频率。自20世纪30年代提出频率合成的概念以来,已经形成了三种基本频率合成方法:直接频率合成;锁相频率合成;直接数字频率合成(DDS)。早期频率合成器(频率综合)采用直接频率合成方式,结构简单,易于实现,但体积大,成本高。随着大规模集成电路和超大型集成电路技术的发展和成熟,可以大量生产小、高性能、低成本的单片机无线/微波固定环路,可以迅速用锁相频率合成器取代直接频率合成器。这三种频率合成方式具有不同的特点和不同的应用领域。直接频率合成具有很好的相位噪声性能,一般应用于地面雷达和射频微波测试装置,其他领域主要采用DDS和锁相频率合成方法。

    APuASYN20-X系列多通道相参频率合成器可以使用其USB或Gb以太网接口通过标准SCPI指令集进行编程。此外,高速操控端口(FCP)可用于“实时”频率、功率和相位同步和触发。APuASYN20-X系列是经济型相参信号发生器的替代方案!APuASYN20-X系列可在1U机箱中实现多达4个单独可设的相参通道输出,同时每个通道的输出频率从8kHz至20GHz紧凑型低噪声频率综合器,具有从-10dBm至+23dBm的可设置输出功率以及出色的相位噪声性能(-125dBc/Hz@1GHz,20kHz)和信号纯度(杂散低至-65dBc),并支持快至5μs的频率切换速度,同时它采用与AnaPico其他高性能信号源相同架构可实现精确的频率合成,具有。它本身还标准脉冲和扫描等调制功能。 APSYN420宽带频综有高速频率切换:低至25µs。

快速跳频频综模块,频综

APSYN140-X系列是一种可在1U机箱中提供多达4个单独且相参通道同时频率范围从100kHz至40GHz(9kHz至43.5GHz可设)低噪声宽带频率综合器,多通道相参频率合成器具有极低的相位噪声,低杂散和超快的频率切换速度,可设置的输出功率在-10dBm至+20dBm之间。APSYN140-X系列多通道相参频率合成器的专有架构可实现精确的频率合成,具有0.00001Hz极小的频率分辨率,并具有非常快的切换速度(全频带输出范围内小于20μs)。频率和列表扫描可以执行多达65000个条目,并且可以从外部触发。还支持基本的调制功能,例如脉冲、频率和相位调制等。AnaPico频综模块分辨率低至0.00001Hz。湖南快速跳频频综信号源

AnaPico频综具有高分辨率的功能。快速跳频频综模块

    SWFA300捷变频频率综合器(频综)是一款在频率范围内任意两点频率的跳频时间在500nS以内的高速跳频源,其输出频率范围为,频率的小步进为10kHz。同时它拥有很好的相位噪声特性,其输出为10GHz时相位噪声可达-105dBc/Hz@1kHz。SWFA300整体模块尺寸只为*95*18mm,这种小型化的设计可以更好的集成到各种高性能尤其对跳频时间有严格要求的射频系统中。产品特点:•输出频率:;•低相位噪声:-105dBc/Hz@1kHz(10GHz)•跳频时间:≤500nS•跳频步进:10kHz•体积小巧:*95*18mm。 快速跳频频综模块

信息来源于互联网 本站不为信息真实性负责