广西通信数字信号测试

时间:2024年05月12日 来源:

需要注意的是,采用8b/10b编码方式也是有缺点的,比较大的缺点就是8bit到10bit的编码会造成额外的20%的编码开销,所以很多10Gbps左右或更高速率的总线不再使用8b/10b编码方式。比如PCIe1.0和PCIe2.0的总线速率分别为2.5Gbps和5Gbps,都是采用8b/10b编码,而PCle3.0、PCle4.0、PCle5.0的总线速率分别达到8Gbps、16Gbps和32Gbps,并通过效率更高的128b/130b的编码结合扰码的方法来实现直流平衡和嵌入式时钟。另一个例子是FibreChannel总线,1xFC、2xFC、4xFC、8xFC的数据速率分别为1.0625Gbps、2 . 125Gbps,4 . 25Gbps 、8 . 5Gbps,都是采用8b/10b编码,而16xFC 、32xFC 的数据速率分别  为14.025Gbps和28.05Gbps,采用的是效率更高的64b/66b编码方式。64b/66b编码在 10G和100G以太网中也有广泛应用。数字信号处理的解决方案;广西通信数字信号测试

广西通信数字信号测试,数字信号测试

为了提高信号在高速率、长距离情况下传输的可靠性,大部分高速的数字串行总线都会采用差分信号进行信号传输。差分信号是用一对反相的差分线进行信号传输,发送端采用差分的发送器,接收端相应采用差分的接收器。图1.13是一个差分线的传输模型及真实的差分PCB走线。

采用差分传输方式后,由于差分线对中正负信号的走线是紧密耦合在一起的,所以外界噪声对于两根信号线的影响是一样的。而在接收端,由于其接收器是把正负信号相减的结果作为逻辑判决的依据,因此即使信号线上有严重的共模噪声或者地电平的波动,对于的逻辑电平判决影响很小。相对于单端传输方式,差分传输方式的抗干扰、抗共模噪声能力 提高。 辽宁数字信号测试产品介绍数字信号抖动的成因(Root Cause of Jitter);

广西通信数字信号测试,数字信号测试

预加重是一种在发送端事先对发送信号的高频分量进行补偿的方法,这种方法的实现是通过增大信号跳变边沿后个比特(跳变比特)的幅度(预加重)来完成的。比如对于一个00111的比特序列来说,做完预加重后序列里个1的幅度会比第二个和第三个1的幅度大。由于跳变比特了信号里的高频分量,所以这种方法实际上提高了发送信号中高频信号的能量。在实际实现时,有时并不是增加跳变比特的幅度,而是相应减小非跳变比特的幅度,减小非跳变比特幅度的这种方法有时又叫去加重(De-emphasis)。图1.26反映的是预加重后信号波形的变化。

对于预加重技术来说,其对信号改善的效果取决于其预加重的幅度的大小,预加重的幅度是指经过预加重后跳变比特相对于非跳变比特幅度的变化。预加重幅度的计算公式如图1.27所示。数字总线中经常使用的预加重有3.5dB、6dB、9.5dB等。对于6dB的预加重来说,相当于从发送端看,跳变比特的电压幅度是非跳变比特电压幅度的2倍。

为了提高串行数据传输的可靠性,现在很多更高速率的数字接口采用对数据进行编码后再做并/串转换的方式。编码的方式有很多,如8b/9b编码、8b/10b编码、64b/66b编码、128b/130b编码等,下面以当下流行的ANSI8b/10b编码为例进行介绍。

在ANSI8b/10b编码方式中,8bit的数据先通过相应的编码规则转换成10bit的数据,再进行并/串转换;接收端收到信号后先把串行数据进行串/并转换得到10bit的数据,再通过10bit到8bit的解码得到原始传输的8bit数据。因此,如果发送端并行侧的数据速率是8bit×100Mbps,通过8b/10b编码和并/串转换后的串行侧的数据速率就是1bit×1Gbps。8b/10b编码方法早由IBM发明,后来成为ANSI标准的一部分(ANSIX3.230-1994,clause11),并在通信和计算机总线上广泛应用。表1.1是ANSI8b/10b编码表的一部分,以数据0x00为例, 数字 信号处理系统的基本组成;

广西通信数字信号测试,数字信号测试

对于并行总线来说,更致命的是这种总线上通常挂有多个设备,且读写共用,各种信号分叉造成的反射问题使得信号质量进一步恶化。

为了解决并行总线占用尺寸过大且对布线等长要求过于苛刻的问题,随着芯片技术的发展和速度的提升,越来越多的数字接口开始采用串行总线。所谓串行总线,就是并行的数据在总线上不再是并行地传输,而是时分复用在一根或几根线上传输。比如在并行总线上 传输1Byte的数据宽度需要8根线,而如果把这8根线上的信号时分复用在一根线上就可 以减少需要的走线数量,同时也不需要再考虑8根线之间的等长关系。 数字信号电平范围象征的逻辑状态;广西通信数字信号测试

数字通信的带宽表征为:bit的传输速率;广西通信数字信号测试

对于典型的3.3V的低电压TTL(LVTTL)信号来说,判决阈值的下限是0.8V,判决阈 值的上限是2.0V。正是由于判决阈值的存在,使得数字信号相对于模拟信号来说有更高的 可靠性和抗噪声的能力。比如对于3.3V的LVTTL信号来说,当信号输出电压为0V时, 只要噪声或者干扰的幅度不超过0.8V,就不会把逻辑状态由0误判为1;同样,当信号输出  电压为3.3V时,只要噪声或者干扰的幅度不会使信号电压低于2.0V,就不会把逻辑状态  由1误判为0。

从上面的例子可以看到,数字信号抗噪声和干扰的能力是比较强的。但也需要注意,这 个“强”是相对的,如果噪声或干扰的影响使得信号的电压超出了其正常逻辑的判决区间,数字信号也仍然有可能产生错误的数据传输。在许多场合,我们对数字信号质量进行分析和 测试的基本目的就是要保证其信号电平在进行采样时满足基本的逻辑判决条件。 广西通信数字信号测试

信息来源于互联网 本站不为信息真实性负责