2
阿拉丁材料科学试剂中的量子点具有宽的激发谱和窄的发射谱。使用同一激发光源就可实现对不同粒径的量子点进行同步检测,因而可用于多色标记,极大地促进了在荧光标记中的应用。而传统的有机荧光染料的激发光波长范围较窄,不同荧光染料通常需要多种波长的激发光来激发,这给实际的研究工作带来了很多不便。此外,量子点具有窄而对称的荧光发射峰,且无拖尾,多色量子点同时使用时不容易出现光谱交叠。量子点具有较大的斯托克斯位移。量子点不同于有机染料的另一光学性质就是宽大的斯托克斯位移,这样可以避免发射光谱与激发光谱的重叠,有利于荧光光谱信号的检测。生物功能性:因各种生物材料的用途而异,如:作为缓释药物时,药物的缓释性能就是其生物功能性。2,6-双(9H-咔唑-9-基)吡啶 CAS:168127-49-9
上海阿拉丁生化科技股份有限公司,是专业的阿拉丁材料科学试剂供应商。阿拉丁材料科学试剂系列产品专题内容提到,只有通过基因工程对生物进行改造,才有可能按人类的愿望生产出更多更好的生物产品。而基因工程的成果也只有通过发酵等工程才有可能转化为产品。医学上通过生物工程可以生产出大量廉价的防治人类疾病的药物,如入胰岛素、干扰素、乙型肝炎疫苗等。生物工程在食品、轻工中的应用面也很广。采用生物工程技术,使育种工作发生了很大变化,如把抗病基因转移到中去,已培育出防止害虫的新品种;把低等生物根瘤菌的固氮基因转移到高等作物的细胞中,使之能自己制造氮肥,也取得了一定成果。10-溴-10'-(2-萘基)-9,9'-联蒽 CAS:1172087-81-8根据材料与生物体接触部位分为:血液相容性:材料用于心血管系统与血液接触,主要考察与血液的相互作用。
阿拉丁材料科学试剂包括替代能源、生物材料、金属与陶瓷材料、纳米材料、有机与印刷电子材料、高分子材料、有机/无机杂化材料、3D生物打印材料等。阿拉丁材料科学试剂品类中的纳米粒子--纳米锡锑氧化物,Antimony Doped Tin Oxide,别名 ATO;氧化锑锡,规格或纯度 99.9%,10-20nm,纳米ATO是一种半导体材料,与传统的抗静电材料相比,纳米ATO导电粉体具有明显的优势,主要表现在良好的导电性,浅色透明性,良好的耐候性和稳定性以及低的红外发射率等方面,是一种极具发展潜力的新型多功能导电材料。成分:SnO2:89-93%; Sb2O3 :7-11%。
材料科学试剂品类中的高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。现代工程技术的发展推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。如高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。高分子磁性材料是人类在不断开拓磁与高分子聚合物。光功能高分子材料是指能够对光进行透射、吸收、储存、转换的一类高分子材料。高分子复合材料是高分子材料和另外不同组成、不同形状、不同性质的物质复合粘结而成的多相材料。用于表征生物材料在生物体内与有机体相互作用的生物学行为。
阿拉丁材料科学试剂中生物材料的可加工性:能够成型、消毒(紫外灭菌、高压煮沸、环氧乙烷气体消毒、酒精消毒等)。性能要求:生物相容性:生物相容性主要包括血液相容性、组织相容性。材料在人体内要求无不良反应,不引起凝血、溶血现象,组织不发生炎症、排拒、致病等。力学性能:材料要有合适的强度、硬度、韧性、塑性等力学性能以满足耐磨、耐压、抗冲击、抗疲劳、弯曲等医用要求。耐生物老化性能:材料在体内要有较好的化学稳定性,能够长期使用,即在发挥其医疗功能的同时要耐生物腐蚀、耐生物老化。成形加工性能:容易成形和加工,价格适中。金属和陶瓷材料产品种类繁多,涵括盐、晶体级无机物、氧化物、陶瓷、碳基材料、硫属化合物、合金和金属等。三(2,2'-二吡啶)钴(III)三(六氟磷酸盐) CAS:28277-53-4
生物过程形成的材料结构、生物矿化原理,材料生物相溶性机理,生物材料自主组装、自我修复的原理。2,6-双(9H-咔唑-9-基)吡啶 CAS:168127-49-9
阿拉丁材料科学试剂品类中的表面功能化纳米粒子--氨基功能化上转换纳米颗粒, 发光波长:365 nm,粒径:35nm,表面修饰材料:dSiO2-NH2。此系列产品为氨基功能化上转换纳米颗粒,材料组成为NaYREF4 (RE:Yb, Er, Tm, Gd, Mn, Lu),较好激发波长为975 nm。敏化离子为Yb3+,刺激离子为Er3+或Tm3+。通过调节各离子掺杂浓度,产品在特定波长的发光已得到优化。表面包覆的二氧化硅或PEG使纳米颗粒具有良好的亲水性,可以直接分散在水介质中。产品粒径均一,发光量子效率高,光稳定性好。该系列产品可与生物分子共价连接,用于荧光成像、生物检测、免疫分析,以及抗病药物和生物分子的光控远程释放等。2,6-双(9H-咔唑-9-基)吡啶 CAS:168127-49-9