安徽2D场形图通信天线设计

时间:2024年03月21日 来源:

  通信天线的原理解析,其波长λ2=。两载波的频率差为大约是L2的,这样选择载波频率便于测得或消除导航信号从GPS卫星传达至接收机时因为电离层效应而引起的传达推迟差错。伪随机噪声码(PRN)即测距码首要有精测距码(P码)和粗测距码(C/A码)两种。其间P码的码率为、C/A码的码率为。数据码是GPS卫星以二进制形式发送给用户接收机的导航定位数据,又名导航电文或D码,它首要包括卫星历、卫星钟校对、电离层推迟校对、工作状况信息、C/A码转换到捕获P码的信息和悉数卫星的概略星历;总电文由1500位组成,,分为5个子帧,每个子帧在6s内发射10个字,每个字30位,合计300位,因此数据码的波特率为50bps。 通信天线的交互性设计使用户能够自由切换不同的通信模式,满足各种需求。安徽2D场形图通信天线设计

安徽2D场形图通信天线设计,通信天线

天线的极限直视距离的超短波特别是微波,频率很高,波长很短,它的地表面波衰减很快,因此不能依靠地表面波作较远距离的传播。超短波特别是微波,主要是由空间波来传播的。简单地说,空间波是在空间范围内沿直线方向传播的波。显然,由于地球的曲率使空间波传播存在一个极限直视距离Rmax。在直视距离之内的区域,习惯上称为照明区;极限直视距离Rmax以外的区域.则称为阴影区。不言而语,利用超短波、微波进行通信时,接收点应落在发射天线极限直视距离Rmax内。山东测量仪通信天线安装天线,助力高效沟通。

安徽2D场形图通信天线设计,通信天线

由于地形和环境的影响,天线接收到的电磁波是有效直射波与反射波、绕射波及散射波的叠加,其结果决定了接收点的场强幅度和相位,并直接影响天线的应用效果。因此,选择天线架设位置应注意以下几个方面:天线的发射或接收方向应避开障碍物(楼房、铁塔、桥梁等);天线架设地点尽量远离干扰源(高压线、航线、铁路、公路等);天线应尽量设在附近的制高点;如有几付天线同在一铁塔上工作,应注意它们之间的左右和上下的间距,以防相互耦合影响系统性能。天馈系统的安装首先将天线、馈线和配套零部件按产品说明的要求组装好,然后在天线的支撑位置,用卡具固定于塔杆的天线支架上,并且使天线与塔杆的平行间距大于使用波长,减少塔杆对天线性能的影响。在天线端口处,将馈电线用连接器(或称电缆头)与天线接好,弯一个直径约五十倍馈电线直径的圆环固定于天线支架上,避免连接器部位直接受力而断线或损坏

天线信号源或负载或传输线,根据它们对地的关系,都可以分成平衡和不平衡两类。若信号源两端与地之间的电压大小相等、极性相反,就称为平衡信号源,否则称为不平衡信号源;若负载两端与地之间的电压大小相等、极性相反,就称为平衡负载,否则称为不平衡负载;若传输线两导体与地之间阻抗相同,则称为平衡传输线,否则为不平衡传输线。在不平衡信号源与不平衡负载之间应当用同轴电缆连接,在平衡信号源与平衡负载之间应当用平行双线传输线连接,这样才能有效地传输信号功率,否则它们的平衡性或不平衡性将遭到破坏而不能正常工作。如果要用不平衡传输线与平衡负载相连接,通常的办法是在粮者之间加装“平衡-不平衡”的转换装置,一般称为平衡变换器。 智能天线,连接未来。

安徽2D场形图通信天线设计,通信天线

影响天馈系统的常见因素:受水和雷电的干扰天线和馈电线本身都有很好的防水、防腐蚀性能,我们所指的主要是天馈系统室外连接部位的防水和防潮湿。天线与馈电线主要是靠连接器连接,采用自粘性橡胶密封带,将其拉伸,以半搭形式缠绕在连接器上,可起到良好的密封防水作用。另外在馈电线进入室内处弯一个返水弯,可避免雨水沿馈电线进入室内设备。天线一般都架设在室外较高的位置,有效地防止雷电干扰和破坏,才能确保通信系统的安全工作。因此,地面设施(如铁塔、建筑物等)应有良好的接地措施,接地电阻不大于4Q。天线应架设在塔顶避雷针的有效避雷范围内,即避雷针顶部下方45?角覆盖面内。通信天线一般都设计成外壳直接接地型,但为防止雷电、强电感应或气候变化引起的脉冲放电对通讯设备的冲击,还应在馈电线上串接避雷装置,使通信系统更安全的工作。受雨雪天气的影响电磁波在不同媒质传播其损耗也有所不同。一般来说雨雪天气比晴朗天气的散射损耗和吸收衰减增大。因此,会影响接收电平,会使通信区域变小,效果变差。随着天气转好,通信恢复正常,则说明天线系统无问题。但如果天气晴朗以后,通信效果仍不好,则应由专业人员检查该系统是否存在故障。通信天线的信号传输稳定,可避免通信中断和数据丢失。福建测量仪通信天线安装

通信天线的信号稳定性高,可有效避免信号干扰和丢失。安徽2D场形图通信天线设计

    天线的输入阻抗定义:天线输入端信号电压与信号电流之比,称为天线的输入阻抗。输入阻抗具有电阻分量Rin和电抗分量Xin,即Zin=Rin+jXin。电抗分量的存在会减少天线从馈线对信号功率的提取,因此,必须使电抗分量尽可能为零,也就是应尽可能使天线的输入阻抗为纯电阻。事实上,即使是设计,调试得很好的天线,其输入阻抗中总还含有一个小的电抗分量值。输入阻抗与天线的结构、尺寸以及工作波长有关,半波对称振子是很重要的基本天线,其输入阻抗为Zin=+j(欧)。当把其长度缩短(3~5)%时,就可以消除其中的电抗分量,使天线的输入阻抗为纯电阻,此时的输入阻抗为Zin=(欧),(标称75欧)。注意,严格的说,纯电阻性的天线输入阻抗只是对点频而言的。顺便指出,半波折合振子的输入阻抗为半波对称振子的四倍,即Zin=280(欧),(标称300欧)。有趣的是,对于任一天线,人们总可通过天线阻抗调试,在要求的工作频率范围内,使输入阻抗的虚部很小且实部相当接近50欧,从而使得天线的输入阻抗为Zin=Rin=50欧------这是天线能与馈线处于良好的阻抗匹配所必须的。 安徽2D场形图通信天线设计

信息来源于互联网 本站不为信息真实性负责