氢核磁核磁共振水泥基材料-土壤-岩芯等多孔介质仪器定制服务

时间:2024年05月17日 来源:

孔隙度:岩石中孔隙体积V_p(或岩石中未被固体物质填充的空间体积)与岩石总体积V_b的比值,用希腊字母ϕ表示:ϕ=V_p/V_b×100%

1)***孔隙度:岩石总孔隙体积V_p与岩石总体积V_b之比:ϕ_a=V_p/V_b×100%

2)连通孔隙度:岩石中相互连通的孔隙体积V_c与岩石总体积V_b之比:ϕ_c=V_c/V_b×100%

3)有效(含烃)孔隙度:岩石中含烃类体积V_e与岩石总体积V_b之比:ϕ_e=V_e/V_b×100%

4)流动孔隙度:流体能在其内自由流动的孔隙体积V_ff与岩石总体积V_b之比:

ϕ_ff=V_ff/V_b×100%

ϕ_a>ϕ_c≥ϕ_e>ϕ_ff 水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可对混泥土水化养护进行分析。氢核磁核磁共振水泥基材料-土壤-岩芯等多孔介质仪器定制服务

氢核磁核磁共振水泥基材料-土壤-岩芯等多孔介质仪器定制服务,水泥基材料-土壤-岩芯等多孔介质

(1) 为了解水稻土转变为设施蔬菜地后土壤水分的相态变化,该研究在田间土壤调查的基础上,结合低场核磁测氢 技术,评价了田间状态的水稻土和不同转化年限设施蔬菜地土壤水分的相态分布情况。结果表明:随着转化时间的延长, 耕层土壤大孔隙吸持的自由水比重下降,土壤小孔隙吸持的束缚水比重上升,犁底层土壤水分的相态分布却无明显变化, 土壤水分吸持性能在转化时间序列上呈现下降的趋势,但长期施用有机肥可以优化耕层质量,提升土壤大孔隙吸持自由水的能力,改善土壤水分供释性能;水稻土转化为设施蔬菜地土壤 2 a 后,出现新犁底层,使得原有的耕层土壤变薄,土 壤水分吸持性能下降。核磁共振作为一种新的技术手段,可以实现实时、快速、准确地检测土壤水分的相态变化,可为 设施农业的可持续管理提供新的技术支持。高精度核磁共振水泥基材料-土壤-岩芯等多孔介质土壤水文特性分析低场核磁共振是一种正在兴起的快速无损检测技术。具有测试速度快,灵敏度高、无损、绿色等优点。

氢核磁核磁共振水泥基材料-土壤-岩芯等多孔介质仪器定制服务,水泥基材料-土壤-岩芯等多孔介质

核磁共振技术是利用岩石等多孔介质内部流体中H原子的核磁共振信号强度与流体体积成正比这一特性来实现岩石微观孔隙结构测量,T2图谱是核磁共振测得的直观结果之一。对于均质的纯净物,发生核磁共振时其内部每个原子核与周围环境的相互作用基本相同,因此可以用一个单一的弛豫时间T来表征被测样品的物性特征。而对于岩石这种多孔介质而言,情况要复杂的多。岩石矿物含量与构成不一,孔隙内的流体被岩石骨架分割在大小形状不一的孔道内,每个原子核与固体表面的接触机会不一样,导致每个原子核弛豫被加强的几率不等,因此,储层岩石内的流体弛豫不能用单一的弛豫时间来描述,而应当是一个分布。不同类型岩石内不同流体决定了各自具有不同的弛豫时间分布。

根据核磁共振T2谱,不只可以得到孔隙度、渗透率等储层常规物性参数,而且与离心、水驱油等实验技术相结合,还可以获得可动流体百分数、剩余油微观分布状态等储层评价所需的参数。与孔隙度、渗透率等常规物性参数不同,润湿性是一个与储层岩石矿物成分、孔隙流体数量和类型等有关的相对特征参数,并且其在油藏水驱开发过程中会发生一定程度的变化。根据核磁共振弛豫机制,T2谱上弛豫时间较长的核磁信号对应岩石中较大孔隙中的流体,T2谱上弛豫时间较短的核磁信号对应细微孔隙中的流体。小型核磁共振仪器能够从频率维度、空间维度和时间维度信息表征物体特性。

氢核磁核磁共振水泥基材料-土壤-岩芯等多孔介质仪器定制服务,水泥基材料-土壤-岩芯等多孔介质

MAGMED Soil-2260高精度磁共振土壤分析仪是用于测试土壤等多孔介质的分析仪。该系统主要用于对样品水分物性。自由与束缚水。以及水分迁移的测量分析。可用于对土壤等多孔介质的孔隙度、孔隙大小分布的测量与分析。还可用于探测和研究样品中的固体有机质。 MAGMED Soil-2260高精度磁共振土壤分析仪采用23MHz磁场强度及进口部件配置。可检测到样品中的微量含氢物质。在保证测量精度的同时。极大拓展了仪器的应用领域。如土壤修复情况评价、质地结构变化对水文特性的影响研究等。水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可对水泥基材料不同配方选择进行研究。无损伤水泥基材料-土壤-岩芯等多孔介质的应用

水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可对水泥基材料的水分含量和水分分布进行研究。氢核磁核磁共振水泥基材料-土壤-岩芯等多孔介质仪器定制服务

PM-1030磁共振水泥基材料分析仪技术性能 1)10MHz磁共振频率和30mm直径的样品尺寸。提高测量的信噪比。确保仪器的高灵敏度; 2)特殊的探头设计。探头死时间短于15us。可完整的采集样品中固体及液体信号。从而获得全部的物理属性和含氢分子的运动状态; 3)高效的探头散热模式。可将测量时探头产生的热量带出。确保测量的稳定性; 4)基于贝叶斯算法的磁共振信号一维反演分析功能。可准确获得T1和T2弛豫时间分布;专有的二维数据分析方法。可重组T1 -T2 /T2 -T2二维相关谱图; 5)基于PID算法的温控系统。使磁体的场强变化保持在200Hz/h。确保测量结果的可靠性与稳定性; 6)较短的样品管设计。便于水泥样品的配置和制作; 7)在增加附件的前提下。升级带有温度场系统。进行相关的对样品进行变温实验。氢核磁核磁共振水泥基材料-土壤-岩芯等多孔介质仪器定制服务

信息来源于互联网 本站不为信息真实性负责