重庆金属纳米力学测试厂商
2005 年,中国科学院上海硅酸盐研究所的曾华荣研究员在国内率先单独开发出定频成像模式的AFAM,但不能测量模量。随后,同济大学、北京工业大学等单位也对这种成像模式进行了研究。2011 年初,我们研究组将双频共振追踪技术用于AFAM,实现了快速的纳米模量成像(一幅256×256 像素的图像只需1~2min),并对其准确度和灵敏度进行了系统研究。较近几年,AFAM 引起了越来越多国内外学者的关注。然而,相对于其他AFM 模式,AFAM 的测量原理涉及梁振动力学和接触力学,初学者不容易掌握。纳米力学测试技术的发展推动了纳米材料和纳米器件的性能优化。重庆金属纳米力学测试厂商
分子微纳米材料在超声诊疗学中的应用,分子影像可以非侵入性探测体内生理和病理情况的变化,有利于研究疾病的病因、发生、发展及转归。近年来由于微纳米技术的飞速发展,超声分子影像也取得了长足的进步。微纳米材料具有独特的优点,可以负载多种药物/分子、容易进行理化修饰、可以进行多重靶向运输等。通过与超声结合可以介导血脑屏障的开放,实现多模态成像、诊疗一体化、重症微环境标志物监控和信号放大。进一步研究应着眼于其生物安全性,实现材料的无潜在致病毒性、无脱靶效应及能进行体内代谢等,解决这些问题将为疾病提供一种新的诊疗模式。重庆金属纳米力学测试厂商纳米力学测试可应用于纳米材料、生物材料、涂层等领域的研究和开发。
纳米压痕仪的应用,纳米压痕仪可适用于有机或无机、软质或硬质材料的检测分析,包括PVD、CVD、PECVD薄膜,感光薄膜,彩绘釉漆,光学薄膜,微电子镀膜,保护性薄膜,装饰性薄膜等等。基体可以为软质或硬质材料,包括金属、合金、半导体、玻璃、矿物和有机材料等。半导体技术(钝化层、镀金属、Bond Pads);存储材料(磁盘的保护层、磁盘基底上的磁性涂层、CD的保护层);光学组件(接触镜头、光纤、光学刮擦保护层);金属蒸镀层;防磨损涂层(TiN, TiC, DLC, 切割工具);药理学(药片、植入材料、生物组织);工程学(油漆涂料、橡胶、触摸屏、MEMS)等行业。
中国计量学院朱若谷、浙江大学陈本永等提出了一种通过测量双法布里一boluo干涉仪透射光强基波幅值差或基波等幅值过零时间间隔的方法进行纳米测量的理论基础,给出了检测扫描探针振幅变化的新方法。中国科学院北京电子显微镜实验室成功研制了一台使用光学偏转法检测的原子力显微镜,通过对云母、光栅、光盘等样品的观测证明该仪器达到原子分辨率,较大扫描范围可达7μm×7μm。浙江大学卓永模等研制成功双焦干涉球面微观轮廓仪,解决了对球形表面微观轮廓进行亚纳米级的非接触精密测量问题,该系统具有0.1nm的纵向分辨率及小于2μm的横向分辨率。纳米力学测试对于材料科学研究至关重要,能够精确测量纳米尺度下的力学性质。
主要的微纳米力学测量技术:1、微纳米压痕测试技术,1.1压入测试技术,压人测试技术是较初的是表征各种材料力学性能较常用的方法之一,可以追溯到 20 世纪初的定量硬度测试方法。传统的压人测试技术是利用已知几何形状的硬压头以预设的压人深度或者载荷作用到较软的样品表面,通过测量残余压痕的尺寸计算相关的硬度指数。但压入测试技术的缺陷在所能够表征的材料力学参量局限于硬度和弹性模量这2个基本的参量。1.2 微纳米压痕测试,近年来新型材料正在向低维化、功能化与复合化方向飞速发展,在微纳米尺度作用区域上开展微纳米压痕测试已被普遍用作评价材料因微观结构变化面诱发力学性能变化以及获得材料物性转变等新现象、新规律的重要工具。所能够表征的材料力学参量也不再局限于硬度和弹性模量这2个基本的参量。测试设置需精确控制实验条件,以消除外部干扰,确保实验结果的准确性。重庆金属纳米力学测试厂商
面向未来,纳米力学测试将继续拓展人类对微观世界的认知边界。重庆金属纳米力学测试厂商
原位纳米片取样和力学测试技术,原位纳米片取样和力学测试技术是一种新兴的纳米尺度力学测试方法,其基本原理是利用优化的离子束打造方法,在含有待测塑料表面的纳米区域内制备出超薄的平面固体材料,再对其进行拉伸、扭曲等力学测试。相比于传统的拉伸试验等方法,原位纳米片取样技术具有更优的尺寸控制和纳米量级精度,可以为纳米尺度力学测试提供更加准确的数据。总之,原位纳米力学测量技术的研究及应用是未来纳米材料科学发展的重要方向之一,将为纳米材料的设计、开发以及工业应用等领域的发展做出积极贡献。重庆金属纳米力学测试厂商
下一篇: 广州涂层纳米力学测试市场价格