智能化多端口矩阵测试数字信号测试联系人

时间:2023年03月21日 来源:

采用这种时钟恢复方式后,由于CDR能跟踪数据中的 一 部分低频抖动,所以数据传输 中增加的低频抖动对于接收端采样影响不大,因此更适于长距离传输。(不过由于受到环路 滤波器带宽的限制,数据线上的高频抖动仍然会对接收端采样产生比较大的影响。)

采用嵌入式时钟的缺点在于电路的复杂度增加,而且由于数据编码需要一些额外开销,降低了总线效率。

随着技术的发展,一些对总线效率要求更高的应用中开始采用另一种时钟分配方式,即前向时钟(ForwardClocking)。前向时钟的实现得益于DLL(DelayLockedLoop)电路的成熟。DLL电路比较大的好处是可以很方便地用成熟的CMOS工艺大量集成,而且不会增加抖动。

一个前向时钟的典型应用,总线仍然有单独的时钟传输通路,而与传统并行总线所不同的是接收端每条信号路径上都有一个DLL电路。电路开始工作时可以有一个训练的过程,接收端的DLL在训练过程中可以根据每条链路的时延情况调整时延,从而保证每条数据线都有充足的建立/保持时间。 对于一个数字信号,要进行可靠的0、1信号传输,就必须满足一定的电平、幅度、时序等标准的要求。智能化多端口矩阵测试数字信号测试联系人

智能化多端口矩阵测试数字信号测试联系人,数字信号测试

由于真正的预加重电路在实现时需要有相应的放大电路来增加跳变比特的幅度,电路  比较复杂而且增加系统功耗,所以在实际应用时更多采用去加重的方式。去加重技术不是  增大跳变比特的幅度,而是减小非跳变比特的幅度,从而得到和预加重类似的信号波形。 图 1.29是对一个10Gbps的信号进行-3.5dB的去加重后对频谱的影响。可以看到,去加  重主要是通过压缩信号的直流和低频分量(长0 或者长 1  的比特流),从而改善其在传输过  程中可 能造成的对短0或者短1 比特的影响。云南数字信号测试联系方式抖动是数字信号,特别是高速数字信号重要的一个概念,越是高速的信号,其比特周期越短对于抖动要求就严格;

智能化多端口矩阵测试数字信号测试联系人,数字信号测试

预加重是一种在发送端事先对发送信号的高频分量进行补偿的方法,这种方法的实现是通过增大信号跳变边沿后个比特(跳变比特)的幅度(预加重)来完成的。比如对于一个00111的比特序列来说,做完预加重后序列里个1的幅度会比第二个和第三个1的幅度大。由于跳变比特了信号里的高频分量,所以这种方法实际上提高了发送信号中高频信号的能量。在实际实现时,有时并不是增加跳变比特的幅度,而是相应减小非跳变比特的幅度,减小非跳变比特幅度的这种方法有时又叫去加重(De-emphasis)。图1.26反映的是预加重后信号波形的变化。

对于预加重技术来说,其对信号改善的效果取决于其预加重的幅度的大小,预加重的幅度是指经过预加重后跳变比特相对于非跳变比特幅度的变化。预加重幅度的计算公式如图1.27所示。数字总线中经常使用的预加重有3.5dB、6dB、9.5dB等。对于6dB的预加重来说,相当于从发送端看,跳变比特的电压幅度是非跳变比特电压幅度的2倍。

要想得到零边沿时间的理想方波,理论上是需要无穷大频率的频率分量。如果比较高只考虑到某个频率点处的频率分量,则来出的时域波形边沿时间会蜕化,会使得边沿时间增大。例如,一个频率为500MHz的理想方波,其5次谐波分量是2500M,如果把5次谐波以内所有分量成时域信号,贝U其边沿时间大概是0.35/2500M=0.14ns,即140ps。

我们可以把数字信号假设为一个时间轴上无穷的梯形波的周期信号,它的傅里叶变换

对应于每个频率点的正弦波的幅度,我们可以勾勒出虚线所示的频谱包络线, 可以看到它有两个转折频率分别对应1/材和1/”(刁是半周期,。是边沿时间)

从1/叫转折频率开始,频谱的谐波分量是按I/?下降的,也就是-40dB/dec (-40分贝每 十倍频,即每增大十倍频率,谐波分量减小100倍)。可以看到相对于理想方波,从这个频 率开始,信号的谐波分量大大减小。 幅度测量是数字信号常用的测量,也是很多其他参数侧鲁昂的基础。

智能化多端口矩阵测试数字信号测试联系人,数字信号测试

基本上可以看到数字信号的频域分量大部分集中在1/7U,这个频率以下,我们可以将这个频率称之为信号的带宽,工程上可以近似为0.35/0,当对设计要求严格的时候,也可近似为0.5/rro

也就是说,叠加信号带宽(0.35/。)以下的频率分量基本上可以复现边沿时间是tr的数字时;域波形信号。这个频率通常也叫作转折频率或截止频率(Fknee或cutofffrequency)

*信号的能量大部分集中在信号带宽以下,意味着我们在考虑这个信号的传输效应时,主要关注比较高频率可以到信号的带宽。

所以,假如在数字信号的传输过程中可以保证在信号的带宽(0.35亿)以下的频率分量(模拟信号)经过互连路径的质量,则我们可以保证接收到比较完整的数字信号。

然而,我们会在下面看到在考虑信号完整性问题时由于传输路径阻抗不连续对信号的反射,损耗随频率的增加而增加的特性等因素,这些频率分量在传输时会有畸变,从而造成接收到的各个频率的分量叠加在时并不能完全保证复现原有的时域的数字信号。 示波器进行数字信号的幅度测试;山西数字信号测试多端口矩阵测试

数字信号带宽用每bit占用的时间间隔的倒数来近似表示,传输速率的单位是bit/s,传输速率=传输信号的带宽。智能化多端口矩阵测试数字信号测试联系人

我们经常使用到的总线根据数据传输方式的不同,可以分为并行总线和串行总线。

并行总线是数字电路中早也是普遍采用的总线结构。在这种总线上,数据线、地址线、控制线等都是并行传输,比如要传输8位的数据宽度,就需要8根数据信号线同时传输;如果要传输32位的数据宽度,就需要32根数据信号线同时传输。除了数据线以外,如果要寻址比较大的地址空间,还需要很多根地址线的组合来不同的地址空间。图1.7是一个典型的微处理器的并行总线的工作时序,其中包含了1根时钟线、16根数据线、16根地址线以及一些读写控制信号。 智能化多端口矩阵测试数字信号测试联系人

深圳市力恩科技有限公司致力于仪器仪表,以科技创新实现高质量管理的追求。力恩科技作为仪器仪表的企业之一,为客户提供良好的实验室配套,误码仪/示波器,矢量网络分析仪,协议分析仪。力恩科技继续坚定不移地走高质量发展道路,既要实现基本面稳定增长,又要聚焦关键领域,实现转型再突破。力恩科技始终关注仪器仪表市场,以敏锐的市场洞察力,实现与客户的成长共赢。

信息来源于互联网 本站不为信息真实性负责