生物膜厌氧反应器水体治理

时间:2023年07月30日 来源:

避免厌氧反应器中鸟粪石的形成的方法:

①对厌氧反应器的进水进行稀释,可以降低Mg²+、NH₄+和PO43-在厌氧消化液中的浓度,使它们的浓度积达不到引起结晶的范围。例如,淀粉废水厌氧处理会形成鸟粪石。对进水进行稀释可以降低水中Mg2+、NH₄+和PO43-的浓度,避免了鸟粪石的产生。②有机废水中的蛋白质经厌氧消化后会产生大量的NH₄+在厌氧消化前,用化学的方法(如加入石灰水)对废水中的可溶性蛋白进行沉淀分离,能减少反应器中铵的产生,可避免鸟粪石的形成。尽管鸟粪石的形成给厌氧反应器的运行带来麻烦,但是利用鸟粪石形成的原理,可以对废水进行除磷、脱氮处理。当厌氧污泥上清液中含有较高浓度的NH₄+和PO43-,只要添加少量的Mg²+,即可形成鸟粪石沉淀,达到脱氮除磷的目的。形成鸟粪石的反应在MAP流化床中进行。镁离子以Mg(OH)₂的形式加入,既可增加镁离子,又可提高pH值。制盐工业中的废盐卤、海水及Mg(OH)₂泥浆都可以作为形成鸟粪石而添加的镁源。形成鸟粪石的过程分为成核与晶核成长两个阶段,在MAP流化床运行过程中,常常需要添加晶胚或结晶载体。在这种情况下,形成鸟粪石沉淀的时间较短,一般为0.5-1h,故MAP流化床的水力停留不必太长。 内循环厌氧反应器通过内循环自动稀释进水,保证反应室进水浓度的稳定性。生物膜厌氧反应器水体治理

厌氧反应器

EGSB厌氧反应器的工作原理:EGSB反应器是对UASB反应器的改进,与UASB反应器相比,它们很大的区别在于反应器内液体上升流速的不同。在UASB反应器中,水力上升流速Vup一般小于1m/h,污泥床更像一个静止床,而EGSB反应器通过采用出水循环,其流速Vup一般可达到2~4m/h,所以整个颗粒污泥床是膨胀的。EGSB反应器这种独有的特征使它可以进一步向着空间化方向发展,反应器的高径比更高。因此对于相同容积的反应器而言,EGSB反应器的占地面积大为减少。生物膜厌氧反应器水体治理厌氧接触工艺的反应器是完全混合式的。

生物膜厌氧反应器水体治理,厌氧反应器

厌氧系统对氮、磷、氮的需求:

厌氧消化微生物需要氮元素、磷元素和硫元素。

1.氮元素可以来自任何能提供-NH2或者NH4+的化合物。如各种含氮的有机物(蛋白质、氨基酸)和含氮的无机物(NH4OH、NH4HCO3),都可以作为氮源。其中产甲烷菌只能以氨态氮作为氮源。

2.磷元素可以来自磷酸二氢钾、磷酸二氢钠、磷酸二氢铵。

3.硫元素来自无机硫,比如硫酸根;或者有机硫,比如蛋白质中的-SH2.

营养元素的C/N/P的比例范围可以是300~500:5:1之间。通常是300~350:5:1


碧州环保成立于2009年,是一家技术服务型环保科技公司,专注于厌氧及其衍生技术,为高浓度废水提供综合解决方案,实现污染物去除与资源和能源的回收。碧州环保在光伏行业、乳制品行业、食品饮料行业、制药行业、造纸行业、化工行业、牧场、养殖场市政、垃圾和污泥均有涉猎。并且在光伏废水处理领域耕耘多年,拥有光伏行业全工艺链废水处理专项技术和经验,先后为协鑫、晶科、晶澳、阿斯特等多家行业先进的客户提供服务,光伏行业项目数量多达40多个,光伏废水日处理量20多万吨,是切片废水处理工艺开发者,高氮氨废水处理工艺开发者,总氮处理工艺先行者,助力企业提速发展!内循环厌氧反应器只需要较短的停留时间,适用于可生化性较好的废水处理。

生物膜厌氧反应器水体治理,厌氧反应器

关于厌氧反应器颗粒污泥的流失:

    颗粒污泥的沉降速度可达到18~100m/h,颗粒污泥反应器的三相分离器窄缝处的上升流速能超过18m/h的情况不多见,颗粒污泥通常都能比较容易的通过三相分离器的窄缝而返回反应器中,因此水力负荷对颗粒污泥流失所造成的影响较小。

    造成颗粒污泥流失的主要原因是产气负荷:

1)颗粒污泥同絮状污泥一样,也会因吸附微小的沼气气泡而产生抬升力,但是由于颗粒污泥比表面积小,与絮状污泥相比,颗粒污泥所受到的抬升力要小得多。因此,沼气的抬升力不是造成颗粒污泥流失的主要原因。但沼气气泡对密度较小的颗粒污泥或细微颗粒污泥的抬升作用仍是不可忽略的。

2)沼气气泡破裂时,在冲刷的作用下,即便颗粒污泥的沉降速度较大,也难以抵挡气泡破裂时产生的冲刷作用。因此沼气的冲刷作用是导致颗粒污泥流失的重要原因。

3)当颗粒污泥反应器中存在大量的絮状污泥时,颗粒污泥的原始核粒以及刚开始成长的较微小的颗粒污泥,往往被包裹在絮状污泥中。当絮状污泥流失时,他们会受到絮状污泥的裹挟而流失。当废水中固体悬浮物SS浓度较高时,SS对细微的颗粒污泥也会产生裹挟作用。因此絮状污泥和SS的裹挟作用是细微颗粒污泥流失的重要原因。 通过厌氧反应器的处理,能够消化有机物质,提取沼气等可再生能源,同时产生有机肥料。四川CSTR厌氧反应器技术

IC PLUS厌氧反应器出水稳定性好。生物膜厌氧反应器水体治理

厌氧反应器处理的四个阶段:即厌氧消化过程分为水解阶段、酸化阶段、产乙酸产氢阶段、产甲烷阶段四个部分。水解阶段:微生物菌体分泌胞外水解酶,将碳氢化合物、脂肪和蛋白质转化为单糖、氨基酸和长链脂肪酸(LCFA);酸化阶段:水解阶段的产物在酸化微生物菌群的作用下降解为戊酸、丁酸、丙酸、乙酸、二氧化碳和氢;产乙酸产氢阶段,功能微生物菌群将戊酸等转化为甲烷细菌可以直接利用的基质-乙酸、二氧化碳和氢;在的产甲烷阶段,产甲烷细菌将乙酸、氢与二氧化碳转化为甲烷和二氧化碳,并伴随着微生物的生长与衰亡,在此同时,系统内的硫酸盐或硝酸盐在硫酸盐还原菌或反硝化菌的作用下,以乙酸或氢作为电子供体,被还原成硫化氢或氮气。生物膜厌氧反应器水体治理

上海碧州环保能源科技有限公司是一家致力于厌氧技术研发与应用的专业公司。我们的主营业务是通过厌氧处理技术,为客户提供高效、环保的能源解决方案。 

作为环保能源行业的一员,我们始终秉持着“创新、zhuoyue、合作、共赢”的关键价值观。我们拥有一支经验丰富、技术精湛的研发团队,不断推动着厌氧技术的创新与发展。通过不断地研究和实践,我们成功地开发出了一系列高效、可靠的厌氧设备和解决方案。 

我们的厌氧技术在多个领域得到了广泛应用。无论是市政水厂、废气还是工业废水处理,我们都能够提供定制化的解决方案,帮助客户实现资源的ZUI DA化利用和能源的高效回收。

我们的技术不仅能够有效减少环境污染,还能够为客户节约能源成本,提升企业的竞争力。 我们始终坚持以客户为中心,为客户提供多反面的服务。

 在未来的发展中,我们将继续秉持着“创新、zhuoyue、合作、共赢”的价值观,不断推动厌氧技术的创新与应用,为客户提供更加品质优良的产品和服务。我们相信,通过我们的努力和客户的支持,碧州环保能源科技有限公司将成为行业的倡导者,为推动环保能源事业的发展做出更大的贡献。

信息来源于互联网 本站不为信息真实性负责