纳米级膜厚仪主要功能与优势

时间:2024年04月30日 来源:

微纳制造技术的发展推动着检测技术进入微纳领域,微结构和薄膜结构作为微纳器件的重要部分,在半导体、航天航空、医学、现代制造等领域得到了广泛应用。由于微小和精细的特征,传统的检测方法无法满足要求。白光干涉法被广泛应用于微纳检测领域,具有非接触、无损伤、高精度等特点。另外,光谱测量具有高效率和测量速度快的优点。因此,这篇文章提出了一种白光干涉光谱测量方法,并构建了相应的测量系统。相比传统的白光扫描干涉方法,这种方法具有更强的环境噪声抵御能力,并且测量速度更快。白光干涉膜厚测量技术的优化需要对实验方法和算法进行改进。纳米级膜厚仪主要功能与优势

纳米级膜厚仪主要功能与优势,膜厚仪

白光干涉法和激光光源相比具有短相干长度的特点,使得两束光只有在光程差非常小的情况下才能发生干涉,因此不会产生干扰条纹。同时,白光干涉产生的干涉条纹具有明显的零光程差位置,避免了干涉级次不确定的问题。本文基于白光干涉原理对单层透明薄膜厚度测量进行了研究,特别是对厚度小于光源相干长度的薄膜进行了探究。文章首先详细阐述了白光干涉原理和薄膜测厚原理,然后在金相显微镜的基础上构建了一种型垂直白光扫描系统,作为实验中测试薄膜厚度的仪器,并利用白光干涉原理对位移量进行了标定。 薄膜膜厚仪厂家白光干涉膜厚测量技术可以应用于光学元件制造中的薄膜厚度管控。

纳米级膜厚仪主要功能与优势,膜厚仪

本文主要研究了如何采用白光干涉法、表面等离子体共振法和外差干涉法来实现纳米级薄膜厚度的准确测量,研究对象为半导体锗和贵金属金两种材料。由于不同材料薄膜的特性差异,所适用的测量方法也会有所不同。对于折射率高,在通信波段(1550nm附近)不透明的半导体锗膜,采用白光干涉的测量方法;而对于厚度更薄的金膜,由于其折射率为复数,且具有表面等离子体效应,所以采用基于表面等离子体共振的测量方法会更合适。为了进一步提高测量精度,本文还研究了外差干涉测量法,通过引入高精度的相位解调手段来检测P光与S光之间的相位差,以提高厚度测量的精度。

由于不同性质和形态的薄膜对系统的测量量程和精度的需求不尽相同,因而多种测量方法各有优劣,难以一概而论。,按照薄膜厚度的增加,适用的测量方式分别为分光光度法、椭圆偏振法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。白光干涉膜厚仪需要进行校准,并选择合适的标准样品。

纳米级膜厚仪主要功能与优势,膜厚仪

目前,应用的显微干涉方式主要有Mirau显微干涉和Michelson显微干涉两张方式。在Mirau型显微干涉结构,在该结构中物镜和被测样品之间有两块平板,一个是涂覆有高反射膜的平板作为参考镜,另一块涂覆半透半反射膜的平板作为分光棱镜,由于参考镜位于物镜和被测样品之间,从而使物镜外壳更加紧凑,工作距离相对而言短一些,其倍率一般为10-50倍,Mirau显微干涉物镜参考端使用与测量端相同显微物镜,因此没有额外的光程差。是常用的方法之一。白光干涉膜厚测量技术可以实现对薄膜的大范围测量和分析。防水膜厚仪价格走势

白光干涉膜厚仪需要校准。纳米级膜厚仪主要功能与优势

白光干涉的相干原理早在1975年就已经被提出 ,随后于1976年在光纤通信领域中获得了实现。1983年,BrianCulshaw的研究小组报道了白光干涉技术在光纤传感领域中的应用。随后在1984年,报道了基于白光干涉原理的完整的位移传感系统。该研究成果证明了白光干涉技术可以被用于测量能够转换成位移的物理参量。此后的几年间,白光干涉应用于温度、压力等的研究相继被报道。自上世纪九十年代以来,白光干涉技术快速发展,提供了实现测量的更多的解决方案。近几年以来,由于传感器设计与研制的进步,信号处理新方案的提出,以及传感器的多路复用[39]等技术的发展,使得白光干涉测量技术的发展更加迅速。纳米级膜厚仪主要功能与优势

信息来源于互联网 本站不为信息真实性负责