膜厚仪

时间:2024年05月01日 来源:

该文主要研究了以半导体锗和贵金属金两种材料为对象,实现纳米级薄膜厚度准确测量的可行性,主要涉及三种方法,分别是白光干涉法、表面等离子体共振法和外差干涉法。由于不同材料薄膜的特性不同,所适用的测量方法也不同。对于折射率高,在通信波段(1550nm附近)不透明的半导体锗膜,选择采用白光干涉的测量方法;而对于厚度更薄的金膜,其折射率为复数,且能够激发表面等离子体效应,因此采用基于表面等离子体共振的测量方法。为了进一步提高测量精度,论文还研究了外差干涉测量法,通过引入高精度的相位解调手段并检测P光和S光之间的相位差来提高厚度测量的精度。它可以用不同的软件进行数据处理和分析,比如建立数据库、统计数据等。膜厚仪

膜厚仪,膜厚仪

晶圆对于半导体器件至关重要,膜厚是影响晶圆物理性质的重要参数之一。通常对膜厚的测量有椭圆偏振法、探针法、光学法等,椭偏法设备昂贵,探针法又会损伤晶圆表面。利用光学原理进行精密测试,一直是计量和测试技术领域中的主要方法之一,在光学测量领域,基于干涉原理的测量系统已成为物理量检测中十分精确的系统之一。光的干涉计量与测试本质是以光波的波长作为单位来进行计量的,现代的干涉测试与计量技术已能达到一个波长的几百分之一的测量精度,干涉测量的更大特点是它具有更高的灵敏度(或分辨率)和精度,。而且绝大部分干涉测试都是非接触的,不会对被测件带来表面损伤和附加误差;测量对象较广,并不局限于金属或非金属;可以检测多参数,如:长度、宽度、直径、表面粗糙度、面积、角度等。膜厚仪供应链该仪器的使用需要一定的专业技能和经验,操作前需要进行充分的培训和实践。

膜厚仪,膜厚仪

利用包络线法计算薄膜的光学常数和厚度 ,但目前看来包络法还存在很多不足,包络线法需要产生干涉波动,要求在测量波段内存在多个干涉极值点,且干涉极值点足够多,精度才高。理想的包络线是根据联合透射曲线的切点建立的,在没有正确方法建立包络线时,通常使用抛物线插值法建立,这样造成的误差较大。包络法对测量对象要求高,如果薄膜较薄或厚度不足情况下,会造成干涉条纹减少,干涉波峰个数较少,要利用干涉极值点建立包络线就越困难,且利用抛物线插值法拟合也很困难,从而降低该方法的准确度。其次,薄膜吸收的强弱也会影响该方法的准确度,对于吸收较强的薄膜,随干涉条纹减少,极大值与极小值包络线逐渐汇聚成一条曲线,该方法就不再适用。因此,包络法适用于膜层较厚且弱吸收的样品。

由于靶丸自身特殊的特点和极端的实验条件,使得靶丸参数的测试工作变得异常复杂。光学测量方法具有无损、非接触、测量效率高、操作简便等优势,因此成为了测量靶丸参数的常用方式。目前常用于靶丸几何参数或光学参数测量的方法有白光干涉法、光学显微干涉法、激光差动共焦法等。然而,靶丸壳层折射率是冲击波分时调控实验研究中的重要参数,因此对其进行精密测量具有重要意义。 常用的折射率测量方法有椭圆偏振法、折射率匹配法、白光光谱法、布儒斯特角法等。操作需要一定的专业基础和经验,需要进行充分的培训和实践。

膜厚仪,膜厚仪

由于不同性质和形态的薄膜对系统的测量量程和精度的需求不相同,因而多种测量方法各有优缺,难以一概而论。将各测量特点总结所示,按照薄膜厚度的增加,适用的测量方式分别为椭圆偏振法、分光光度法、共聚焦法和干涉法。对于小于1μm的较薄薄膜,白光干涉轮廓仪的测量精度较低,分光光度法和椭圆偏振法较适合。而对于小于200nm的薄膜,由于透过率曲线缺少峰谷值,椭圆偏振法结果更加可靠。基于白光干涉原理的光学薄膜厚度测量方案目前主要集中于测量透明或者半透明薄膜,通过使用不同的解调技术处理白光干涉的图样,得到待测薄膜厚度。本章在详细研究白光干涉测量技术的常用解调方案、解调原理及其局限性的基础上,分析得到了常用的基于两个相邻干涉峰的白光干涉解调方案不适用于极短光程差测量的结论。在此基础上,我们提出了基于干涉光谱单峰值波长移动的白光干涉测量解调技术。白光干涉膜厚仪是用于测量薄膜厚度的一种仪器,可用于透明薄膜和平行表面薄膜的测量。苏州膜厚仪详情

可以配合不同的软件进行分析和数据处理,例如建立数据库、统计数据等 。膜厚仪

白光扫描干涉法可以避免色光相移干涉法测量的局限性。该方法利用白光作为光源,由于白光是一种宽光谱的光源,相干长度相对较短,因此发生干涉的位置范围很小。在白光干涉时,存在一个确定的零位置,当测量光和参考光的光程相等时,所有波长的光均会发生相长干涉,此时可以观察到一个明亮的零级条纹,同时干涉信号也达到最大值。通过分析这个干涉信号,可以得到被测物体的几何形貌。白光扫描干涉术是通过测量干涉条纹来完成的,而干涉条纹的清晰度直接影响测试精度。因此,为了提高精度,需要更为复杂的光学系统,这使得条纹的测量变得费力费时。膜厚仪

信息来源于互联网 本站不为信息真实性负责