深圳新一代语音识别

时间:2023年12月06日 来源:

    提升用户体验,仍然是要重点解决的问题。口语化。每个说话人的口音、语速和发声习惯都是不一样的,尤其是一些地区的口音(如南方口音、山东重口音),会导致准确率急剧下降。还有电话场景和会议场景的语音识别,其中包含很多口语化表达,如闲聊式的对话,在这种情况下的识别效果也很不理想。因此语音识别系统需要提升自适应能力,以便更好地匹配个性化、口语化表达,排除这些因素对识别结果的影响,达到准确稳定的识别效果。低资源。特定场景、方言识别还存在低资源问题。手机APP采集的是16kHz宽带语音。有大量的数据可以训练,因此识别效果很好,但特定场景如银行/证券柜台很多采用专门设备采集语音,保存的采样格式压缩比很高,跟一般的16kHz或8kHz语音不同,而相关的训练数据又很缺乏,因此识别效果会变得很差。低资源问题同样存在于方言识别,中国有七大方言区,包括官话方言(又称北方方言)、吴语、湘语、赣语、客家话、粤语、闽语(闽南语),还有晋语、湘语等分支,要搜集各地数据(包括文本语料)相当困难。因此如何从高资源的声学模型和语言模型迁移到低资源的场景,减少数据搜集的代价,是很值得研究的方向。语种混杂(code-switch)。在日常交流中。实时语音识别就是对音频流进行实时识别。深圳新一代语音识别

    中国科学院声学所成为国内shou个开始研究计算机语音识别的机构。受限于当时的研究条件,我国的语音识别研究在这个阶段一直进展缓慢。放开以后,随着计算机应用技术和信号处理技术在我国的普及,越来越多的国内单位和机构具备了语音研究的成熟条件。而就在此时,外国的语音识别研究取得了较大的突破性进展,语音识别成为科技浪潮的前沿,得到了迅猛的发展,这推动了包括中科院声学所、中科院自动化所、清华大学、中国科技大学、哈尔滨工业大学、上海交通大学、西北工业大学、厦门大学等许多国内科研机构和高等院校投身到语音识别的相关研究当中。大多数的研究者将研究重点聚焦在语音识别基础理论研究和模型、算法的研究改进上。1986年3月,我国的"863"计划正式启动。"863"计划即国家高技术研究发展计划,是我国的一项高科技发展计划。作为计算机系统和智能科学领域的一个重要分支。语音识别在该计划中被列为一个专项研究课题。随后,我国展开了系统性的针对语音识别技术的研究。因此,对于我国国内的语音识别行业来说,"863"计划是一个里程碑,它标志着我国的语音识别技术进入了一个崭新的发展阶段。但是由于研究起步晚、基础薄弱、硬件条件和计算能力有限。贵州语音识别模块该领域的大部分进展归功于计算机能力的迅速提高。

    DBN),促使了深度神经网络(DNN)研究的复苏。2009年,Hinton将DNN应用于语音的声学建模,在TIMIT上获得了当时比较好的结果。2011年底,微软研究院的俞栋、邓力又把DNN技术应用在了大词汇量连续语音识别任务上,降低了语音识别错误率。从此语音识别进入DNN-HMM时代。DNN-HMM主要是用DNN模型代替原来的GMM模型,对每一个状态进行建模,DNN带来的好处是不再需要对语音数据分布进行假设,将相邻的语音帧拼接又包含了语音的时序结构信息,使得对于状态的分类概率有了明显提升,同时DNN还具有强大环境学习能力,可以提升对噪声和口音的鲁棒性。简单来说,DNN就是给出输入的一串特征所对应的状态概率。由于语音信号是连续的,不仅各个音素、音节以及词之间没有明显的边界,各个发音单位还会受到上下文的影响。虽然拼帧可以增加上下文信息,但对于语音来说还是不够。而递归神经网络(RNN)的出现可以记住更多历史信息,更有利于对语音信号的上下文信息进行建模。由于简单的RNN存在梯度和梯度消散问题,难以训练,无法直接应用于语音信号建模上,因此学者进一步探索,开发出了很多适合语音建模的RNN结构,其中有名的就是LSTM。


    直接调用即可开启语音识别功能。RunASR函数代码如下:用户说完话后,LD3320通过打分的方式,将关键词列表中特征**相似的一个作为输出。然后LD3320会产生一个中断信号,此时MCU跳入中断函数读取C5寄存器的值,该值即为识别结果,得到结果后,用户可以根据数值来实现一些功能,比如读取到1,说明是“播放音乐”,那么可以调用前面的PlaySound函数来播放音乐。语音识别控制的关键点在于语音识别的准确率。表1给出了测试结果,当然也可以在识别列表中加入更多的关键词来做测试。通过测试结果可以看出,LD3320的识别率在95%上,能够满足用户需求。4结语本文讨论了基于AVR单片机的语音识别系统设计的可行性,并给出了设计方案。通过多次测试结果表明,本系统具有电路运行稳定,语音识别率高,成本低等优点。同时借助于LD3320的MP3播放功能,该系统具有一定的交互性和娱乐性。移植性方面,系统通过简单的修改,可以很方便地将LD3320驱动程序移植到各种嵌入式系统中。随着人们对人工智能功能的需求,语音识别技术将越来越受到人们的关注,相信不久的将来,语音识别将会拥有更广阔的应用。远场语音识别技术以前端信号处理和后端语音识别为主,以让语音更清晰,后送入后端的语音识别引擎进行识别。

    并能产生兴趣投身于这个行业。语音识别的技术历程现代语音识别可以追溯到1952年,Davis等人研制了世界上个能识别10个英文数字发音的实验系统,从此正式开启了语音识别的进程。语音识别发展到已经有70多年,但从技术方向上可以大体分为三个阶段。下图是从1993年到2017年在Switchboard上语音识别率的进展情况,从图中也可以看出1993年到2009年,语音识别一直处于GMM-HMM时代,语音识别率提升缓慢,尤其是2000年到2009年语音识别率基本处于停滞状态;2009年随着深度学习技术,特别是DNN的兴起,语音识别框架变为DNN-HMM,语音识别进入了DNN时代,语音识别精细率得到了提升;2015年以后,由于“端到端”技术兴起,语音识别进入了百花齐放时代,语音界都在训练更深、更复杂的网络,同时利用端到端技术进一步大幅提升了语音识别的性能,直到2017年微软在Swichboard上达到词错误率,从而让语音识别的准确性超越了人类,当然这是在一定限定条件下的实验结果,还不具有普遍代表性。GMM-HMM时代70年代,语音识别主要集中在小词汇量、孤立词识别方面,使用的方法也主要是简单的模板匹配方法,即首先提取语音信号的特征构建参数模板,然后将测试语音与参考模板参数进行一一比较和匹配。

     搜索的本质是问题求解,应用于语音识别、机器翻译等人工智能和模式识别的各个领域。深圳新一代语音识别

将语音片段输入转化为文本输出的过程就是语音识别。深圳新一代语音识别

    训练通常来讲都是离线完成的,将海量的未知语音通过话筒变成信号之后加在识别系统的输入端,经过处理后再根据语音特点建立模型,对输入的信号进行分析,并提取信号中的特征,在此基础上建立语音识别所需的模板。识别则通常是在线完成的,对用户实时语音进行自动识别。这个过程又基本可以分为“前端”和“后端”两个模块。前端主要的作用就是进行端点检测、降噪、特征提取等。后端的主要作用是利用训练好的“声音模型”和“语音模型”对用户的语音特征向量进行统计模式识别,得到其中包含的文字信息。语音识别技术的应用语音识别技术有着应用领域和市场前景。在语音输入控制系统中,它使得人们可以甩掉键盘,通过识别语音中的要求、请求、命令或询问来作出正确的响应,这样既可以克服人工键盘输入速度慢,极易出差错的缺点,又有利于缩短系统的反应时间,使人机交流变得简便易行,比如用于声控语音拨号系统、声控智能玩具、智能家电等领域。在智能对话查询系统中,人们通过语音命令,可以方便地从远端的数据库系统中查询与提取有关信息,享受自然、友好的数据库检索服务,例如信息网络查询、医疗服务、银行服务等。语音识别技术还可以应用于自动口语翻译。深圳新一代语音识别

信息来源于互联网 本站不为信息真实性负责