数据准SEM扫描电镜硬碳孔径分布测试测定
锂离子电池隔膜的孔径尺寸、多孔程度、分布均一性、厚度直接影响电解液的扩散速率和安全性,对电池的性能有很大影响。如果隔膜的孔径太小,锂离子的透过性受限,影响电池中锂离子的传输性能,使得电池内阻增大;如果孔径太大,锂枝晶的生长可能会刺穿隔膜,造成短路或起爆等事故。
电池材料的安全性一直是用户关心的重要问题。利用SEM扫描电镜检测电池材料技术可以帮助您提前发现材料中的潜在安全隐患,减少意外事故的发生。我们的产品不仅可以检测材料的微观缺陷,还可以分析材料的化学成分和结构特性,确保您所使用的电池材料安全可靠。
我们的团队由从事检测行业10年专业领队,团队成员100%硕博学历,平均新能源材料检测领域从业3年以上。他们的专业知识和丰富经验可以提供高质量的测试服务。我们项目部以客户需求为重心,提供专业化、定制化、个性化方案,建立完善的服务流程和沟通机制,全程跟踪大客户的需求和反馈,及时解决问题和提供支持。此外,如果客户在研发过程中遇到任何问题或需要技术支持,我们也会提供专业的建议和解决方案,帮助客户研发成功。 我们的专业团队通过SEM扫描电镜技术,能够快速准确地发现电池材料中的微观缺陷,确保产品质量。数据准SEM扫描电镜硬碳孔径分布测试测定
正负极材料包覆层将直接影响活性物质的电化学性能,现有的技术方案采用TEM-EDS(透射电子显微镜能谱仪)面扫描、聚焦离子束切割截面扫描电镜(FIB-TEM)或辅助XPS(X射线光电子能谱仪)测试。
透射电镜能看到单个颗粒结构,但是只能得到局部,无法得到整体的定量数据;FIB-SEM(聚焦离子束扫描电子显微镜)只能看到颗粒且受限于SEM的分辨率也很难得到样品整体的定量数据。判断包覆完整性,评价包覆工艺的方法,方法还在完善中。正极材料表面的岩盐层和层状转化;化成和循环国产中形成的CEI膜图像和成分的含量;材料的晶格条纹,电子衍射图等等。
我们拥有80余台大中型仪器设备,总价值超2亿元,涵盖了电池材料测试的各个方面。这些仪器可以满足各种不同的测试需求,包括成分分析、物理性质测试、化学性能评估等等。我们项目部以客户需求为中心,提供专业化、定制化、个性化方案,建立完善的服务流程和沟通机制,全程跟踪大客户的需求和反馈,及时解决问题和提供支持。 武汉SEM扫描电镜测试操作步骤我们的检测团队在电池材料分析领域有着丰富的经验和专业知识,能够满足客户多样化的需求。
在电池材料的生产过程中,SEM可用于制造过程质量控制,能够识别原材料及其中间产物的质量波动。前驱体与三元材料的生产、工艺研发或材料检验。通过SEM可以观察三元材料的粒径、粒度分布(均一性)、球型度、比表面积等指标,从而直接影响锂电池的电化学性能。通过SEM可以观测电池粉体颗粒的完整性,例如是否出现裂纹。通过SEM扫描电镜检测技术,我们能够对电池材料的微观结构进行全方面观察和分析。我们可以清晰地观察到表面形貌、晶粒分布以及界面结合情况,为您提供准确的材料分析结果。
同时,我们的团队成员都是从事检测行业10年以上的技术老师领队,团队成员100%硕博学历,平均新能源材料检测领域从业3年以上,他们的专业知识和丰富经验可以提供高质量的测试服务。在测试过程中遇到任何问题,我们都提供及时的技术支持和技术指导,确保客户能够顺利完成测试。由于我们的专业性和服务质量,许多企业都选择与我们建立长期合作关系,信赖我们的专业能力和服务品质。这种长期合作和信赖是我们持续提供好服务的动力和保障。
近年来SEM扫描电子显微学分析技术已经成为表征电池材料的主要手段,扫描电子显微镜(SEM) 作为显微镜的重要分支,具有放大倍率宽、适用样品广、立体 成像效果好和综合分析能力强等优点,在表征形貌、辅助机理研究以及分析微区元素组成等方面有独特的优势,一定程度上弥补了上述显微镜的不足。
在电池研究中,原位SEM是一种非常有效的方法,使研究人员能够观察锂电池的运行情况,为电池循环中涉及的关键过程提供关键定量化的信息。例如,通过检查锂枝晶的生长和SEI层的形成-破裂等现象,原位SEM有助于提高我们对电池行为的理解。此外,该技术已被用于研究温度、湿度、电解液、运行时间和电极结构等变量对电池性能的影响,为开发新型电池材料和设计灵敏检测系统提供了重要信息。
电池是由电极、电解质与隔膜等材料组成,能将化学能转化成电能的装置。SEM是电池材料形貌表征便捷的表征手段之一,能清楚地反映和记录材料的三维形貌特征,粉末、块状、片状的电极材料均可用SEM进行直接观察,获得不同放大倍数的图像。总之,我们使用先进的仪器和设备对电池材料进行全方面的检测和分析并采取一系列措施来解决可能出现的问题,我们的专业知识和经验可以帮助您在电池研发过程中取得成功。 SEM扫描电镜能够实时观察电池材料的表面形貌和结构特征。
SEM背散射技术还能够提供样品的成分信息及分布情况。背散射电子携带有样品的成分信息,原子序数大的元素比原子序数轻的元素背散射电子信号更强,在背散射图像中体现为更亮的区域,所以图像的衬度差异能体现不同元素组分的分布情况,尤其适用于相对原子质量相差较大的金属合金样品。
庆熙大学Joa等为了减小锌电极在液体电解质环境下的副反应,将锌(Zn)和铋(Bi)掺杂并球磨,通过观察球磨产物背散射图像里的衬度差异,来证实Zn-Bi合金电极的成功制备(亮区为Bi,暗区为Zn)。扫描电镜工作环境对真空度要求较高,图像质量受电池材料本身性质制约( 如导电性、磁性、热敏性、易挥发等) ,缺乏观察材料内部结构的能力,这都在一定程度上限制了它的功能和应用。
聚焦离子束-扫描电子显微镜双束系统(FIB-SEM)可以实现材料微纳米尺度上的精细加工;扫描透射电子显微镜(STEM)既可以获知材料的表面信息又可以探测材料的内部结构;环境扫描电镜(ESEM)可以对不导电、含水的样品进行直接观察,保留样品的真实性。
我们拥有20个自营实验室,这些实验室配备了80余台大中型仪器设备,总价值超过2亿元。因此可以根据客户需求进行定制化服务,满足不同企业的特定需求~ SEM扫描电镜检测可以帮助您分析电池材料中的晶体取向和晶界结合强度。合肥SEM扫描电镜测试推荐哪家
我们的检测团队利用SEM扫描电镜,可以评估电池材料的表面润湿性和粘附性。数据准SEM扫描电镜硬碳孔径分布测试测定
极片杂质分析
客户需求
越来越多的厂商开始重视电池的前处理工艺,尤其是针对极片上的颗粒或微量金属残渣。这些颗粒或微量金属残渣容易在长期充放电和激烈碰撞后造成电池短路,甚至可能引起自燃和起爆。想将这些颗粒或者金属残渣彻底除掉,就要知道其组成,通过杂质分析服务则可以知道道其组成,进而选择合适工艺将其去除。
解决方案
实验室选择了高温热解和电化学氧化等方法进行前处理,这样可以有效地消解样品中的微量金属,还建立了ICP标准曲线,并进行了大量的测试和验证。合适的前处理方法和ICP标准曲线,保证了检测结果的准确性。数据回流也能帮助生产厂商有效地控制电池中的微量金属含量,确保电池的安全性和质量。 数据准SEM扫描电镜硬碳孔径分布测试测定
科学指南针已覆盖全国主要省份,实现全国多层次的分部建设。
2014年公司注册成立
2016年入驻启迪之星(上海),完成种子轮融资,同时不断更新产品线
2017年获得来自启迪之星创投等机构的天使轮投资
2019年测试分析总样品量超过60万个,用户数达到20万人
2019年科学指南针被科技部选为“全国科研仪器服务联盟副理事长单位”
2020年9月科学指南针获得经纬中国投资
2020年10月科学指南针被工信部评为“2020互联网+科研服务领jun企业”
2021年7月正式取得检验检测机构资质认定证书(CMA)
2021年10月科学指南针生物实验室获批《实验动物使用许可证》
2021年12月科学指南针主编&浙江大学出版社出版书籍《材料测试宝典》
2022年1月5日科学指南针南京材料实验室获得3张测量审核评价证书(CNAS),结果为满意
2022年1月25日科学指南针南京环境实验室获得1张测量审核评价证书(CNAS),结果为满意
2022年5月16日科学指南针南京材料实验室取得检验检测机构资质认定证书(CMA)
2023年5月通过2023年度第1批浙江省“专精特新”中小企业认定
科学指南针与哈工大郑州研究院达成战略合作共建分析测试联合实验室