经验丰富SEM扫描电镜+CP负极极片Si团聚体检测

时间:2024年04月27日 来源:

为了深入理解阴极材料的电化学行为,科研人员需要对其进行精细的元素分析。尽管EDS能量散射谱技术可以对阴极上的多种元素进行定性和定量分析,但它对于锂离子(Li)的探测却存在一定的局限性。近年来,锂离子电池的发展在能源储存领域占据了重要地位,而其中阴极材料的电化学性能对电池的整体表现具有决定性影响。

然而,TOF-SIMS(飞行时间二次离子质谱)技术的出现为科研人员提供了新的途径。这种技术不仅可以检测所有元素,而且对于含量较低的轻元素如Li具有出色的灵敏度。当与FIB-SSEM(聚焦离子束-扫描电子显微镜)结合使用时,TOF-SIMS的空间分辨率得到了显著提高,能够在高分辨率下观察样品的形貌、截面以及各种元素的分布情况。通过SEM,可以清晰地观察到阴极材料在充放电过程中的微观结构变化。这些变化可能会影响电池的性能,如充放电速率和容量。此外,SEM还可以配备EDS探测器,从而在观察形貌的同时进行元素分析。

我们的团队主要成员全部来自全球高等学府,如美国密歇根大学、卡耐基梅隆大学、瑞典皇家工学院、浙江大学、上海交通大学、同济大学等,拥有丰富的专业知识和实践经验。我们从人员、设备仪器、实验室规模等方面不断拓展和提升,为客户提供更便捷的服务。 我们的检测工程师运用SEM扫描电镜技术,能够发现电池材料的微小缺陷。经验丰富SEM扫描电镜+CP负极极片Si团聚体检测

经验丰富SEM扫描电镜+CP负极极片Si团聚体检测,SEM扫描电镜

结合正极常用开放手段,总结材料结构常见表征如下:如三元材料主元素分布及含量;正极二次颗粒团聚状态,孔洞分布;磷酸铁锂正极活性物质进行碳包覆改善导电性;硅负极或硅氧负极活性物质进行碳包覆改善其体积效应和导电性;正极材料包覆及和快离子导体的形成;负极材料表面包覆不同碳层;正极材料表面包覆岩盐层及CEI膜状态,电子衍射图。

SEM-EDS(扫描电子显微镜)是场发射电镜和X射线能量色散谱的结合,微区表征手段;在定性元素含量方面检测极限:0.1%(能量色散谱方法),只能做半定量分析,准确性较低。主要成分元素含量及高含量重金属掺杂包覆定性。对于能量较低的碱金属元素含量,元素是否梯度分布等,应用有局限性,含量低的元素建议点扫,并且需要ICP-OES(电感耦合等离子体发射光谱仪)辅助定性定量。

我们拥有一支由专业工程师和科学家组成的团队,利用完善设备,结合现代分离分析技术,能在多个技术领域解决当下企业在产品研发和生产过程各种面临的各种复杂问题。我们服务于各类新能源电池材料测试需求,为客户提供全方面、个性化的解决方案,助力他们在市场竞争中占据优势地位。 高质量SEM扫描电镜+CP磷酸铁锂晶界缺陷检测SEM扫描电镜能够实时观察电池材料的表面形貌和结构特征。

经验丰富SEM扫描电镜+CP负极极片Si团聚体检测,SEM扫描电镜

在锂离子电池加工工艺中,可以使用SEM扫描电镜对极片涂覆后频粒的均匀性,以及极片切割后边缘的平整性进行表征,避免因加工过程中的工艺不当而造成电池失效。

此外,在锂离子电池发生失效现象之后,还可以使用SEM扫描电镜对拆麻解后的失效电池进行表征,帮助定位具体的失效位置。通过观察具体失效位置的表面形貌和元素素分布,如正负极颗粒的晶粒特征和破损情况、析锂情况、过渡金属溶出情况、隔膜形貌等,对电池具体的失效原因进行分析总结,改善工艺流程,避免二次失效的出现。

我们的团队由一批具备丰富经验和专业背景的工程师组成,他们始终关注行业动态和技术发展趋势,确保我们的服务始终处于行业前沿。我们始终坚持严格的质量控制流程,确保每一个检测结果的准确性和可靠性。在服务过程中,我们将为您提供详细的检测报告和数据分析,助您更好地理解材料性能并指导产品优化。

在正/负极电极极片中,除了正负极材料作为活性物质外,还需要使吏用粘结剂将主料固定到导电集流体上,同时在其中添加导电剂。导电剂的存在能够让电子在正负电极内和集流体间快速穿梭,提高电池的倍率性能,降低电池内阻,提升电池的循环性能。锂离子电池的设计需要挑选合适的导电剂来提高正负极活性物质的比例,并且不影响电池的导电性能。

在锂离子电池中,目前常用的导电剂是碳系导电剂,主要包括纤维状导电剂(碳纳米管、VGCF等)、片状导电剂(石墨烯等)、颗粒状导电剂(导电石墨、导电碳黑)。SEM是一种用于观察材料表面形貌和结构的仪器。还应用于锂离子电池的加工工艺中,在极片制造过程中,需将正/负极活性物质、导电剂和粘结剂等刷抖按比例混合,将浆料涂覆在集流体上,然后经过辊压、分切、制片等工艺过程获得极片。使用SEM可以对涂布、辊压后极片表面活性物质、导电剂的均匀程度和分散性进行检测。

我们始终坚持以客户至上的服务理念,致力于为客户提供满意的服务体验。从样品提交到测试报告出具,我们都会全程跟踪并提供及时的反馈。 我们持续优化检测流程,确保数据结果的准确性和可靠性,为客户提供满意的服务体验。

经验丰富SEM扫描电镜+CP负极极片Si团聚体检测,SEM扫描电镜

利用SEM扫描电镜检测电池材料技术,SEM可以提供电池材料表面的高分辨率图像,帮助检测和分析表面形貌的特征,如颗粒形态、表面结构、纹理等,可以获取电池材料中粒子的大小和分布情况,包括颗粒的平均尺寸、粒径分布等,结合能谱分析(EDS),可以确定电池材料的化学成分,分析样品中不同元素的含量及其分布情况。我们都能够通过SEM技术为您提供准确可靠的数据。

很多时候,扫描电镜一般都配有波谱仪或者能谱仪。波谱仪可以进行微区成分分析;能谱仪则可以利用X光量子的能量不同来进行元素分析。一般情况下,SEM可以放大5-20万倍,分辨率可以到纳米级别。此外,作为显微镜家族,除了SEM,还有TEM(透射电子显微镜)、AFM(原子力显微镜)、STM(扫描隧道显微镜)、STEM(扫描投射电子显微镜),原理和应用场景不同。

我们每年持续投入5千万元以上购买设备,表明我们对研发和技术创新的重视,证明我们在不断更新技术和设备,以保持先导地位。我们拥有一支经验丰富的团队,不断学习和掌握新兴的检测技术。同时,我们与国内外多家研究机构和企业合作,我们致力于提供到位的服务,从客户咨询到样品提交、测试、报告出具等各个环节,都为客户提供全角度的服务和支持。 SEM扫描电镜在电池材料检测中能够提供高分辨率的图像,帮助客户深入了解材料微观结构及表面形貌。经验丰富SEM扫描电镜+CP负极极片Si团聚体检测

我们的SEM扫描电镜技术可以帮助客户评估电池材料的寿命和循环稳定性。经验丰富SEM扫描电镜+CP负极极片Si团聚体检测

负极材料的孔径分布是指不同孔径的孔在材料中的分布情况。这些孔可以是闭孔、开孔或介孔。一般来说,具有较窄孔径分布的材料具有更好的电化学性能。在电池充放电过程中,锂离子需要穿过负极材料的孔径。如果孔径过小,锂离子穿过时会受到较大的阻力,导致电池的充放电速率降低。相反,如果孔径过大,锂离子穿过时可能会在材料表面发生副反应,导致电池的循环寿命缩短。因此,合理的孔径分布可以平衡充放电速率和循环寿命,提高电池的整体性能。

我们的SEM扫描电镜技术能够通过高分辨率的图像获取和分析电池材料的微观结构和表面特征。这意味着我们可以帮助您发现并解决电池材料中的缺陷、污染或不均匀性等问题,从而提高电池的性能和寿命。

除了解决用户的痛点,我们也关注提升自己的专业度。我们实验室通过ISO9001质量管理体系,CMA国家计量认证,团队主成员均来自美国密歇根大学,卡耐基梅隆大学,瑞典皇家工学院,浙江大学,上海交通大学,同济大学等海内外名校。累计服务超50万客户,并与包括世界500强企业在内内的5000家达成合作,平均每4.5天就有企业借助科学指南针的分析检测结果推动产品研发。 经验丰富SEM扫描电镜+CP负极极片Si团聚体检测

科学指南针390+仪器类型任你选,实现材料测试全覆盖。

技术人员100%硕博学历,行业经验3年起,够专业!19个大型服务研发需求的专业实验室,快的话当天出结果。

科学指南针拥有31个办事处,覆盖全国主要城市,支持上门取样。

斥资超2亿购买仪器设备,没有中间商就是让你省。

4593篇论文致谢,做中国拔尖研发服务机构我们很用心。

我们的云现场”指南针“黑科技”,实时直连SEM、AFM、TEM、球差电镜或FIB-SEM屏幕,测试老师与您一对一沟通,实现在线选区,所见即所得。

我们的团体账户是为企业设置的专属团队管理功能,负责人创建专属团体账户,成员扫码即可加入该团体账户中,实现高效便捷的团队管理。

热门标签
信息来源于互联网 本站不为信息真实性负责