微米级膜厚仪测量仪

时间:2024年05月02日 来源:

为限度提高靶丸内爆压缩效率,期望靶丸所有几何参数、物性参数均为理想球对称状态。因此,需要对靶丸壳层厚度分布进行精密的检测。靶丸壳层厚度常用的测量手法有X射线显微辐照法、激光差动共焦法、白光干涉法等。下面分别介绍了各个方法的特点与不足,以及各种测量方法的应用领域。白光干涉法以白光作为光源,宽光谱的白光准直后经分光棱镜分成两束光,一束光入射到固定参考镜。一束光入射到待测样品。由计算机控制压电陶瓷(PZT)沿Z轴方向进行扫描,当两路之间的光程差为零时,在分光棱镜汇聚后再次被分成两束,一束光通过光纤传输,并由光谱仪收集,另一束则被传递到CCD相机,用于样品观测。利用光谱分析算法对干涉信号图进行分析得到薄膜的厚度。该方法能应用靶丸壳层壁厚的测量,但是该测量方法需要已知靶丸壳层材料的折射率,同时,该方法也难以实现靶丸壳层厚度分布的测量。随着技术的进步和应用领域的拓展,白光干涉膜厚仪的性能和功能将不断提高和扩展 。微米级膜厚仪测量仪

微米级膜厚仪测量仪,膜厚仪

在激光惯性约束核聚变实验中,靶丸的物性参数和几何参数对靶丸制备工艺改进和仿真模拟核聚变实验过程至关重要。然而,如何对靶丸多个参数进行同步、高精度、无损的综合检测是激光惯性约束核聚变实验中的关键问题。虽然已有多种薄膜厚度及折射率的测量方法,但仍然无法满足激光核聚变技术对靶丸参数测量的高要求。此外,靶丸的参数测量存在以下问题:不能对靶丸进行破坏性切割测量,否则被破坏的靶丸无法用于后续工艺处理或打靶实验;需要同时测得靶丸的多个参数,因为不同参数的单独测量无法提供靶丸制备和核聚变反应过程中发生的结构变化的现象和规律,并且效率低下、没有统一的测量标准。由于靶丸属于自支撑球形薄膜结构,曲面应力大、难以展平,因此靶丸与基底不能完全贴合,可在微观区域内视作类薄膜结构。纳米级膜厚仪哪个品牌好白光干涉膜厚仪需要校准。

微米级膜厚仪测量仪,膜厚仪

折射率分别为1.45和1.62的2块玻璃板,使其一端相接触,形成67的尖劈.将波长为550nm的单色光垂直投射在劈上,并在上方观察劈的干涉条纹,试求条纹间距。

我们可以分2种可能的情况来讨论:

一般玻璃的厚度可估计为1mm的量级,这个量级相对于光的波长550nm而言,应该算是膜厚e远远大于波长^的厚玻璃了,所以光线通过上玻璃板时应该无干涉现象,同理光线通过下玻璃板时也无干涉现象.空气膜厚度因劈角很小而很薄,与波长可比拟,所以光线通过空气膜应该有干涉现象,在空气膜的下表面处有一半波损失,故光程差应该为2n2e+λ/2.

(2)假设玻璃板厚度的量级与可见光波长量级可比拟,当单色光垂直投射在劈尖上时,上玻璃板能满足形成薄膜干涉的条件,其光程差为2n2e+λ/2,下玻璃板也能满足形成薄膜于涉的条件,光程差为2n1h+λ/2,但由于玻璃板膜厚均匀,h不变,人射角i=俨也不变,故玻璃板形成的薄膜干涉为等倾又等厚干涉条纹,要么玻璃板全亮,要么全暗,它不会影响空气劈尖干涉条纹的位置和条纹间距。空气劈尖干涉光程差仍为2n2e+λ/2,但玻璃板会影响劈尖干涉条纹的亮度对比度.

自上世纪60年代开始,西方的工业生产线广泛应用基于X及β射线、近红外光源开发的在线薄膜测厚系统。随着质检需求的不断增长,20世纪70年代后,电涡流、超声波、电磁电容、晶体振荡等多种膜厚测量技术相继问世。90年代中期,随着离子辅助、离子束溅射、磁控溅射、凝胶溶胶等新型薄膜制备技术的出现,光学检测技术也不断更新迭代,以椭圆偏振法和光度法为主导的高精度、低成本、轻便、高速稳固的光学检测技术迅速占领日用电器和工业生产市场,并发展出了个性化定制产品的能力。对于市场占比较大的微米级薄膜,除了要求测量系统具有百纳米级的测量准确度和分辨率之外,还需要在存在不规则环境干扰的工业现场下具备较高的稳定性和抗干扰能力。白光干涉膜厚测量技术可以实现对不同材料的薄膜进行测量;

微米级膜厚仪测量仪,膜厚仪

白光干涉在零光程差处,出现零级干涉条纹,随着光程差的增加,光源谱宽范围内的每条谱线各自形成的干涉条纹之间互有偏移,叠加的整体效果使条纹对比度下降。测量精度高,可以实现测量,采用白光干涉原理的测量系统的抗干扰能力强,动态范围大,具有快速检测和结构紧凑等优点。普通的激光干涉与白光干涉之间虽然有差别,但也有许多相似之处。可以说,白光干涉实际上就是将白光看作一系列理想的单色光在时域上的相干叠加,在频域上观察到的就是不同波长对应的干涉光强变化曲线。膜厚仪依赖于膜层和底部材料的反射率和相位差来实现这一目的。高精度膜厚仪以客为尊

这种膜厚仪可以测量大气压下 。微米级膜厚仪测量仪

在激光惯性约束核聚变实验中 ,靶丸的物性参数和几何参数是靶丸制备工艺改进和仿真模拟核聚变实验过程的基础,因此如何对靶丸多个参数进行同步、高精度、无损的综合检测是激光惯性约束核聚变实验中的关键问题。以上各种薄膜厚度及折射率的测量方法各有利弊,但针对本文实验,仍然无法满足激光核聚变技术对靶丸参数测量的高要求,靶丸参数测量存在以下问题:不能对靶丸进行破坏性切割测量,否则,被破坏后的靶丸无法用于于下一步工艺处理或者打靶实验;需要同时测得靶丸的多个参数,不同参数的单独测量,无法提供靶丸制备和核聚变反应过程中发生的结构变化现象和规律,并且效率低下、没有统一的测量标准。靶丸属于自支撑球形薄膜结构,曲面应力大、难展平的特点导致靶丸与基底不能完全贴合,在微区内可看作类薄膜结构微米级膜厚仪测量仪

信息来源于互联网 本站不为信息真实性负责