核磁共振水泥基材料-土壤-岩芯等多孔介质应用研究

时间:2024年04月04日 来源:

对水稻田转化为设施菜地土壤质量的演变按研究侧重点不同大致分为3个方面:土壤物理性质、土壤化学性质和土壤生物学性质演变。在土壤化学和生物学性质的演变研究方面,对水稻田转化后的设施菜地土壤研究发现土壤盐渍化、酸化、养分累积、微生物活性降低等现象频现。近年来,随着核磁共振技术的不断发展,研究者结合先进的核磁扫描和成像技术,实现了低场核磁测氢技术在农业领域、生命科学领域、石油/多孔介质领域、食品/药品领域、高分子材料领域、轻工纺织领域的应用。一方面,由于低场核磁具备场强低(<0.5T)、磁场稳定、均匀性好等优势,对Fe2+、Fe3+、Mn6+等含量较高的土壤磁化作用较小,从而可以检出土壤含水率。另外,由于低场核磁探测设备具有体积小、质量轻、易携带等特点,可以实时、动态、快速、准确地监测田间土壤水分相态的变化,这对于研究农田水分变化规律以及分析和计算农田灌溉用水量具有重要意义。非常规岩芯分析仪具有高性能驱替系统,及大围压1万psi,及大驱替压8千psi,最高温度120℃。核磁共振水泥基材料-土壤-岩芯等多孔介质应用研究

核磁共振水泥基材料-土壤-岩芯等多孔介质应用研究,水泥基材料-土壤-岩芯等多孔介质

磁共振横向弛豫时间T2是描述氢原子核弛豫快慢的特征参数,其大小反应了氢原子核所处的环境,即束缚的越强烈,弛豫越快,T2越小。基于此,当土壤中充满水,通过对土壤样品T2弛豫时间的测量及T2弛豫时间的一维反演分布,可获得3-4个明显的谱峰,分别对应微孔、中孔、大孔及完全自由水,每个谱峰的积分面积对应该类型孔隙所占的比例,从而对土壤中的孔隙分布做出评价分析。通常微孔和潜力束缚水对应的T2为0.1-60ms之间,谱峰在60-300ms之间则表征中孔中水,大孔中的水对应的谱峰在300-1000ms之间,而完全自由水(Bulk water)的弛豫时间2s-3s之间。 MAGMED-Soil-2260磁共振土壤分析仪,配备22MHz静磁场,能够有效提高信号的信噪比,探头死时间小于15us,极短回波时间0.08ms,能够精确、全力的采集土壤样品中所有孔径对应的弛豫时间信号,为土壤的孔隙分布研究提供一种精确、快速、方便的分析途径。一站式核磁共振水泥基材料-土壤-岩芯等多孔介质高性能驱替系统核磁共振是指具有固定磁距的原子核,在恒定磁场与交变磁场的作用下,与交变磁场发生能量。

核磁共振水泥基材料-土壤-岩芯等多孔介质应用研究,水泥基材料-土壤-岩芯等多孔介质

水泥基材料-土壤-岩芯等多孔介质核磁共振检测技术特点 测量目标原子核的特一性 由于不同的原子核在相同的磁场强度下。有不同的进动频率。所以我们在测量某一原子核的信号时。不会受到其他原子核的干扰。如在测量1H原子核时不会收到19F原子核的干扰。反之亦然。 通过T1、 T2的测量,实现不同样品的组分分析。 弛豫时间T1、 T2由样品性质决定。包括样品中原子核所处物理化学环境、细胞环境、样品中原子核数目、样品的相态等。因此,分析样品中目标原子核的T1、 T2值。可实现研究样品的物理和化学性质。 优点: 直接测量,无需任何处理。 样品无损伤分析,可进行重复测量。 环保、无毒、无任何副作用。 低场核磁共振是一种正在兴起的快速无损检测技术。具有测试速度快。灵敏度高、无损、绿色等优点。已广阔应用在食品品质控制、非酒精性脂肪肝等代谢疾病、石油勘探、水泥水化过程分析、水泥基材料不同配方选择、土壤水分物性及孔隙物性研究、土壤固体有机质探测、非常规岩芯总体孔隙度及有效孔隙度检测、油水气饱等水泥基材料、土壤、岩芯等多孔介质领域。

相比于经典的土壤水分测量方法,基于低场核磁的土壤水分相态分布探测技术具有操作步骤简单、测试过程便捷、成本投入较低的优势。另外,它还有专门使的土壤水分测量软件,实现了参数设置、定标、测量、数据上传、查询过程的一体化,可以直接将测试结果实时传输到电脑终端,结合自动灌溉系统,实现了设施菜地土壤管理的科学化和自动化。另外,由于核磁共振测氢技术可以很好地区分不与固体颗粒或溶剂相互作用的自由水和结晶水,以及物理化学键结合的结合水或不易移动水,并且可以通过横向弛豫特征峰面积与土壤含水率之间的线性关系推算出土壤含水量,从而可为土壤水分相态分布的检出提供新的技术支持。水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可对水泥基材料的微观结构、裂缝变化进行分析。

核磁共振水泥基材料-土壤-岩芯等多孔介质应用研究,水泥基材料-土壤-岩芯等多孔介质

计算机断层扫描成像技术(CT):根据CT技术扫描岩芯样品得到的断面图像进行高精度微米纳米尺度上的计算机三维建模,建立页岩的孔隙几何、矿物分布、吼道分布、渗透率、流体渗流通道等属性模型,被称为数字岩芯技术。受限于样品规格、图像识别分辨率、复杂算法,以及且数据处理耗时耗力。

岩芯核磁共振检测:低场核磁共振(NMR)方法以测试样品规格多样(块样,柱样,全直径岩芯均可)、测试速度快、获取岩芯物性信息丰富、对样品无损害等优势在砂岩、煤岩、碳酸盐岩、致密砂岩、页岩等油气资源勘探开发领域得到了***的发展和应用。低场核磁共振技术已被广泛应用于储层实验评价研究的各个方面,如孔隙度、孔径分布、核磁渗透率、孔隙结构、润湿性、气水相互作用、束缚流体与可动流体识别、油气水识别、伪毛细管压力曲线转换、残余油分布、流体可视化研究、甲烷等温吸附曲线、高温高压驱替等等。 水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可用于非常规岩芯总孔隙度及有效孔隙度检测。麦格瑞水泥基材料-土壤-岩芯等多孔介质检测

水泥基材料-土壤-岩芯等多孔介质磁共振分析仪可对混泥土的耐久性进行分析。核磁共振水泥基材料-土壤-岩芯等多孔介质应用研究

核磁共振技术是利用岩石等多孔介质内部流体中H原子的核磁共振信号强度与流体体积成正比这一特性来实现岩石微观孔隙结构测量,T2图谱是核磁共振测得的直观结果之一。对于均质的纯净物,发生核磁共振时其内部每个原子核与周围环境的相互作用基本相同,因此可以用一个单一的弛豫时间T来表征被测样品的物性特征。而对于岩石这种多孔介质而言,情况要复杂的多。岩石矿物含量与构成不一,孔隙内的流体被岩石骨架分割在大小形状不一的孔道内,每个原子核与固体表面的接触机会不一样,导致每个原子核弛豫被加强的几率不等,因此,储层岩石内的流体弛豫不能用单一的弛豫时间来描述,而应当是一个分布。不同类型岩石内不同流体决定了各自具有不同的弛豫时间分布。核磁共振水泥基材料-土壤-岩芯等多孔介质应用研究

信息来源于互联网 本站不为信息真实性负责