klf8免疫组化
荧光标记二抗的选择普遍;与使用荧光素结合一抗的检测相比,成本较低。间接免疫荧光的缺点:由于需要具有两种不同物种反应性的两种抗体,因此物种交叉反应性问题增加;与直接免疫荧光相比,时间更长(操作步骤更多)。间接免疫荧光的优点:通过增加能够与一抗结合的二抗数量进行信号放大;与直接免疫荧光相比,通过信号放大提高检测灵敏度;荧光标记二抗的选择普遍;与使用荧光素结合一抗的检测相比,成本较低。间接免疫荧光的缺点:由于需要具有两种不同物种反应性的两种抗体,因此物种交叉反应性问题增加;与直接免疫荧光相比,时间更长(操作步骤更多)。免疫荧光技术可以用于研究代谢疾病和内分泌系统的功能。klf8免疫组化
免疫荧光间接法测抗体实验步骤:滴加0.01mol/L,pH7.4的PBS于已知抗原标本片,10min后弃去,使标本片保持一定湿度。滴加以0.01mol/L,pH7.4的PBS适当稀释的待检抗体标本,覆盖已知抗原标本片。将玻片置于有盖搪瓷盒内,37℃保温30min。取出玻片,置于玻片架上,先用0.01mol/L,pH7.4的PBS冲洗1-2次,然后按顺序过0.01mol/L,pH7.4的PBS三缸浸泡,每缸5min,不时振荡。取出玻片,用滤纸吸去多余水分,但不使标本干燥,滴加一滴一定稀释度的荧光标记的抗人球蛋白抗体。将玻片平放在有盖搪瓷盒内,37℃保温30min。重复操作3。取出玻片,用滤纸吸去多余水分,滴加一滴缓冲甘油,再覆以盖玻片。荧光显微镜高倍视野下观察,结果判定同直接法。CTNT免疫免疫荧光技术可以用于研究细胞信号传导和信号通路。
荧光色素:四甲基异硫氰酸罗丹明(tetramethylrhodamineisothiocyanate,TRITC)结构式如下:较大吸引光波长为550nm,较大发射光波长为620nm,呈橙红色荧光。与FITC的翠绿色荧光对比鲜明,可配合用于双重标记或对比染色。其异硫氰基可与蛋白质结合,但荧光效率较低。免疫荧光技术又称荧光抗体技术,是标记免疫技术中发展较早的一种。它是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术。很早以来就有一些学者试图将抗体分子与一些示踪物质结合,利用抗原抗体反应进行组织或细胞内抗原物质的定位。
免疫学的基本反应是抗原-抗体反应。由于抗原抗体反应具有高度的特异性,所以当抗原抗体发生反应时,只要知道其中的一个因素,就可以查出另一个因素。免疫荧光技术就是将不影响抗原抗体活性的荧光色素标记在抗体(或抗原)上,与其相应的抗原(或抗体)结合后,在荧光显微镜下呈现一种特异性荧光反应。在此基础上又分为两种方法:直接法和间接法。直接法:将标记的特异性荧光抗体直接加到抗原上,经过一定时间反应,即可结合并显色。间接法:先用抗原的抗体(一抗)与抗原反应结合,再用荧光标记的二抗(一抗的抗体)与抗原反应,形成抗体-抗原-抗体复合物。免疫荧光技术中,以荧光物质标记抗体来定位抗原物质的方法被称为荧光抗体技术。
荧光的猝灭:荧光分子的辐射能力在受到激发光较长时间的照射后会减弱甚至猝灭,这是由于激发态分子的电子不能回复到基态,所吸收的能量无法以荧光的形式发射。一些化合物有天然的荧光猝灭作用而被用作猝灭剂,以消除不需用的荧光。因此荧光物质的保存应注意避免光(特别是紫外光)的直接照射和与其他化合物的接触。在荧光抗体技术中常用一些非荧的色素物质如亚甲蓝、碱性复红。伊文思蓝或低浓度的过锰酸钾、碘溶液等对标本进行得当复染,以减弱非特异性荧光本质,使特异荧光更突出显示。在1941年,Coons初次成功地使用荧光素作为标记物质进行免疫荧光实验。CTNT免疫
免疫荧光技术可以用于研究内脏移植和免疫抑制。klf8免疫组化
细胞免疫荧光步骤对大家来说一定是很陌生的,他是一种抗原抗体反应,好像对我们来说他显得很遥远的样子,因为我们并不了解他能做什么,通过这种技术可以让我们对抗原或抗体的性质、定位一次来分析出更多的数据。细胞免疫荧光,这对很多人来说都是一次听说这个东西,也不知道他对我们会有什么好处与坏处,科学研究就是这样子的,普通老百姓是不会明白其中的道理的,但是这些研究也是确实的在我们的生活中取得了成果,能够让大家过的更加舒适。klf8免疫组化