代理分销商WILLSEMI韦尔WMM7027ABRL0-4/TR

时间:2024年04月21日 来源:

WS4612:60mΩ电流限制型电源分配开关

产品描述

    WS4612是一款具有高侧开关和极低导通电阻的P-MOSFET。其集成的电流限制功能可以限制大电容负载、过载电流和短路电流的涌入,从而保护电源。此外,WS4612还集成了反向保护功能,当设备关闭时,可以消除开关上的任何反向电流流动。设备关闭时,输出自动放电,使输出电压迅速关闭。热关断功能可以保护设备和负载。WS4612提供SOT-23-5L和TSOT-23-5L两种封装。标准产品为无铅且无卤素。

产品特性

· 输入电压范围:2.5-5.5V

· 主开关RON:60mΩ@VIN=5.0V

· 电流限制精度:±15%

· 调整电流限制范围:0.1A-2.5A(典型值)

· 典型上升时间:600μS

· 静态供电电流:26μA

· 欠压锁定

· 自动放电

· 反向阻断(无“体二极管”)

· 过温保护


应用领域

· USB外设

· USB Dongle

· USB 3G数据卡

· 3.3V或5V电源开关

· 3.3V或5V电源分配

     WS4612是功能丰富的电源分配开关,专为现代电子设备电源管理和保护设计。极低导通电阻和集成电流限制功能,应对高电容负载和短路情况。反向保护和自动放电功能增强安全性。适用于USB外设、数据卡和电源分配,确保设备稳定运行。紧凑封装,环保无铅无卤素设计,易集成。详情查阅数据手册或联系我们。 ESD73011N-2/TR 静电和浪涌保护(TVS/ESD)封装:DFN1006。代理分销商WILLSEMI韦尔WMM7027ABRL0-4/TR

代理分销商WILLSEMI韦尔WMM7027ABRL0-4/TR,WILLSEMI韦尔

RB521C30:肖特基势垒二极管

· 重复峰值反向电压 VRM 30 V

· 直流反向电压 VR 30 V

· 平均整流正向电流 IO 100 mA


产品特性:

     100mA平均整流正向电流:RB521C30具有出色的电流处理能力,能够处理高达100mA的平均整流正向电流,使其在需要稳定电流处理的电路中表现出色。

    低正向电压:肖特基势垒二极管以其低正向电压为特点,这意味着在正向偏置条件下,它需要的电压较低,从而降低了功耗。

   低漏电流:RB521C30的漏电流非常低,这有助于在关闭或待机状态下减少不必要的功耗。

   小型SOD-923封装:这款二极管采用紧凑的SOD-923封装,使其适合在空间受限的应用中使用,如便携式设备和小型电路板。

应用领域:

     RB521C30肖特基势垒二极管特别适合用于低电流整流应用。在电路中,它能够将交流信号转换为直流信号,这对于许多电子设备来说都是至关重要的。由于其低正向电压和低漏电流的特性,它特别适用于需要高效能和低功耗的场合,如电池供电的设备或需要长时间运行的系统。此外,其紧凑的封装形式也使得它成为空间受限应用的理想选择。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。 代理分销商WILLSEMI韦尔ESD5302NWL2817DA33-8/TR 线性稳压器(LDO) 封装:DFN1612-8。

代理分销商WILLSEMI韦尔WMM7027ABRL0-4/TR,WILLSEMI韦尔

WPM1481:单P沟道、-12V、-5.1A功率MOSFET

产品描述:

    WPM1481是一款P沟道增强型MOS场效应晶体管。它采用了先进的沟槽技术和设计,以提供出色的RDS(ON)和低栅极电荷。这款器件适用于DC-DC转换、电源开关和充电电路。标准产品WPM1481为无铅产品。小型DFN2*2-6L封装。

产品特性:

· 沟槽技术

· 超高密度单元设计

· 出色的导通电阻

· 适用于更高的直流电流

· 极低的阈值电压

应用领域:

· 继电器、电磁阀、电机、LED等的驱动器

· DC-DC转换电路

· 电源开关

· 负载开关

· 充电应用  

     WPM1481是一款高性能的P沟道功率MOSFET,专为高电流应用而设计。其出色的RDS(ON)和极低的阈值电压使其成为DC-DC转换、电源开关和充电电路的理想选择。同时,其小型DFN2*2-6L封装使得它在空间受限的应用中也能发挥出色。WPM1481作为无铅产品,还符合环保要求。无论是用于驱动继电器、电磁阀、电机还是LED,WPM1481都能提供可靠且高效的性能。如需更详细的信息或技术规格,请查阅相关的数据手册或联系我们。

     ESD9X5VL是一款单向瞬态电压抑制器(TVS),为可能遭受静电放电(ESD)的敏感电子元件提供极高水平的保护。它被设计用于替代消费设备中的多层变阻器(MLV),适用于手机、笔记本电脑、平板电脑、机顶盒、液晶电视等设备。ESD9X5VL结合了一对极低电容转向二极管和一个TVS二极管。根据IEC61000-4-2标准,它可用于提供高达±20kV(接触和空气放电)的ESD保护,并根据IEC61000-4-5标准承受8/20μs脉冲的峰值电流高达4A。ESD9X5VL采用FBP-02C封装,标准产品为无铅、无卤素。

特性:

· 截止电压:5V

· 根据IEC61000-4-2(ESD)为每条线路提供瞬态保护:±20kV(接触和空气放电)

· IEC61000-4-4(EFT):40A(5/50ns)

· IEC61000-4-5(浪涌):4A(8/20μs)

· 极低电容:CJ=1.2pF(典型值)

· 极低漏电流:IR<1nA(典型值)

· 低箝位电压:VCL=18V(典型值)@IPP=16A(TLP)

· 固态硅技术

应用:

· USB2.0和USB3.0

· HDMI1.3和HDMI1.4

· SATA和eSATA

· DVI

· IEEE 1394

· PCI Express

· 便携式电子产品

· 笔记本电脑

    ESD9X5VL是保护高速数据接口免受静电放电损害的瞬态电压抑制器。响应迅速,避免噪声和干扰,高可靠且适用于便携式设备。详情查阅手册或联系我们。 WNM2020-3/TR 场效应管(MOSFET) 封装:SOT-23。

代理分销商WILLSEMI韦尔WMM7027ABRL0-4/TR,WILLSEMI韦尔

      WL2801E是一款优异的低噪声、高PSRR(电源抑制比)以及高速CMOSLDO(低压差线性稳压器)。其高精度与出色的性能,使其在手机、笔记本电脑以及其他便携式设备中表现出色,为用户提供了前所未有的性价比体验。这款设备不仅具有出色的限流折回电路,能够同时作为短路保护和输出电流限制器,而且采用标准的SOT-23-5L封装,确保产品的环保性和安全性。

      WL2801E的主要特性包括宽输入电压范围(2.7V~5.5V)、灵活的输出电压范围(1.2V~3.3V)、以及高达300mA的输出电流能力。其高达75dB的PSRR在217Hz下表现出色,确保了电源噪声的有效抑制。此外,其低dropout电压(170mV@IOUT=200mA)和极低静态电流(70μA)使得它在低功耗应用中表现突出。

     这款产品的应用领域较广,包括MP3/MP4播放器、手机、无线电话、数码相机、蓝牙和无线手持设备以及其他便携式电子设备。无论是对于追求高性能的设计师,还是对于寻求成本效益的生产商,WL2801E都是理想的选择。

     安美斯科技专注于国产电子元器件的代理分销,并可以提供样品。这体现了我们对产品质量的自信和对客户需求的深入理解。选择安美斯科技,您将获得优异的产品和服务。 WL2836D25-4/TR 线性稳压器(LDO) 封装:UDFN-4-EP(1x1)。中文资料WILLSEMI韦尔SPD81581A

WS72412S-8/TR 运算放大器 封装:SOIC-8。代理分销商WILLSEMI韦尔WMM7027ABRL0-4/TR

    ESD5311X是一款极低电容的瞬态电压抑制器(TVS),专为保护高速数据接口而设计。它特别用于保护连接到数据和传输线的敏感电子组件,免受由静电放电(ESD)引起的过应力影响。ESD5311X包含一个极低电容的转向二极管对和一个TVS二极管。根据IEC61000-4-2标准,ESD5311X可提供高达±20kV(接触放电)的ESD保护,并根据IEC61000-4-5标准,能承受高达4A(8/20μs)的峰值脉冲电流。ESD5311X采用WBFBP-02C-C封装,为标准无铅且无卤素产品。

主要特性:

截止电压:5V

根据IEC61000-4-2(ESD)的每条线瞬态保护:±20kV(接触放电)

根据IEC61000-4-5(浪涌)的瞬态保护:4A(8/20μs)

极低电容:CJ=0.25pF(典型值)

极低漏电流:IR<1nA(典型值)

低钳位电压:VCL=22V(典型值)@IPP=16A(TLP)

固态硅技术

应用领域:

USB2.0和USB3.0

HDMI1.3和HDMI1.4

SATA和eSATA

DVI

IEEE 1394

PCI Express

便携式电子设备

笔记本电脑

    ESD5311X是一款专为高速数据接口设计的瞬态电压抑制器,可承受高达±20kV的静电放电和4A的峰值脉冲电流,保护电子组件免受损害。适用于USB、HDMI、SATA等接口,确保数据传输的稳定性。紧凑、环保,广泛应用于便携式设备和笔记本电脑。如需更多信息,请查阅手册或联系我们。 代理分销商WILLSEMI韦尔WMM7027ABRL0-4/TR

信息来源于互联网 本站不为信息真实性负责