上海学校电网模拟设备方案

时间:2024年10月19日 来源:

基于改进型LADRC的STATCOM抑制双馈风电场次同步振荡策略

摘要:针对双馈风电场经串联补偿线路送出引发的次同步振荡问题,提出了一种基于改进型线性自抗扰控制(LADRC)的静止同步补偿器(STATCOM),实现对系统次同步振荡的抑制。LADRC设计时考虑延时因素,在控制计算中消除由信号测量、传输等延时导致的输入量之间时间轴上的不匹配。基于改进型LADRC设计了STATCOM的附加阻尼控制器、电压外环、电流内环控制器以及锁相环,使STATCOM为系统提供正阻尼,同时增强控制系统的速动性和抗干扰能力,以适应次同步振荡工况,并从阻抗角度分析了STATCOM抑制次同步振荡的作用机理。在MATLAB/Simulink中搭建了系统的时域仿真模型,实验结果证实了所提出的抑制策略在动态性能和抗干扰方面的优越性。 电网模拟设备较多可以并联达960kVA,无需拆装机柜即可简易并机。上海学校电网模拟设备方案

上海学校电网模拟设备方案,电网模拟设备

电网模拟设备的作用是模拟和仿真电力系统中电网的运行和行为。它可以用于以下几个方面:

1. 电力系统稳定性研究:电网模拟设备可以用于进行电力系统的稳定性研究和分析。通过模拟各种电力系统的工作状态、负荷变化和故障条件,可以评估电力系统的稳定性、鲁棒性和可靠性,并优化控制策略和保护方案。

2. 教育培训和研究:电网模拟设备还可以用于电力领域的教育培训和科学研究。学生和研究人员可以通过对电网模拟设备的实验和仿真研究,深入了解电力系统的运行原理、稳定性分析方法以及电能质量控制等知识。 长沙大型电网模拟设备多少钱这种电网模拟设备具有高精度和可调节的输出能力,能够模拟电力系统在不同负载下的响应和运行情况。

上海学校电网模拟设备方案,电网模拟设备

电网模拟设备将能够模拟各种电网连接点和动态事件,以在现场直接测试样机。

除模拟各类电网故障外,设备还能测试电网的动态频率变化,以分析大功率风机并网的可行性,测试并网效果。为了测试电网的恢复能力,还可以模拟电网停电。

电网模拟设备可用于太阳能发电和风力发电设备的研发、品质验证以及生产阶段。其全四象限运行、能源回馈以及电压波形编辑功能可符合相关法规(UL1741SA/IEEE1547/IEC62116)以及测试规范要求。

用户可根据测试需求更改相关的参数,如电压、频率、相位变动、三相不平衡及闪变等,以模拟被测试产品所需的电网状态测试条件。电网模拟设备具备能源回馈电网的功能,可以有效节约能源,减少运行成本。

电网模拟电源功能:

1. 采用FPGA数字化控制技术,逆变器测试流程可完全实现智能化;

2. 具备能量回馈电网功能,电源能够四象限运行;

3. 输入功率因数校正功能;

4. 具备高性能的高低(零)电压穿越、阶跃、暂降、闪变等测试功能,可进行1ms穿越测试;

5. 电压和频率可设置复杂编程方式,轻松实现过欠压,过欠频测试;

6. 三相不平衡模式,可分别调节三相电压及三相相位差或直接设置三相不平衡度;

7. 具备2-50次谐波输出及间谐波输出功能;

8. 可用于NBT32004-2018、IEC61000-4-11/13/14/28等标准法规测试。 该电网模拟设备可以实时监测电网数据,帮助用户进行智能化电网管理与控制。

上海学校电网模拟设备方案,电网模拟设备

二、 电网模拟设备是一种用于模拟电力系统运行情况的设备,它通过软件和硬件结合的方式,能够模拟电力系统的各种参数和运行状态,以及各种负荷情况和异常事件。电网模拟设备的主要功能包括以下几个方面:

1. 电网模拟设备是一种用于模拟电力系统运行情况的设备,它通过软件和硬件结合的方式,能够模拟电力系统的各种参数和运行状态,以及各种负荷情况和异常事件。电网模拟设备的主要功能包括以下几个方面:

2. 故障模拟:电网模拟设备能够模拟电力系统中的各种故障情况,例如短路故障、接地故障和设备损坏等。用户可以设定故障模型,以评估电力系统的安全性和稳定性。

3. 控制策略验证:电网模拟设备可以用于验证电力系统的控制策略,例如自动发电机组启动与停机策略、无功补偿与电压控制策略等。用户可以设计和测试不同的控制策略,并观察模拟结果。

电网模拟设备广泛应用于电力系统规划、运行调度、新能源接入研究、设备测试与验证、教育培训等领域。它可以帮助研究人员、工程师和运营人员对电力系统进行仿真分析,优化设计和决策支持,以提高电力系统的可靠性、稳定性和效率。 电网模拟电源主要应用于光伏逆变器、储能逆变器、风电变流机、发电机及电站系统的并网侧特性测试。上海学校电网模拟设备方案

电网模拟设备用于模拟电网电压实际运行,并依据相关标准法规模拟电网正常及异常状况。上海学校电网模拟设备方案

大规模风电经LCC-HVDC送出的送端电网频率协同控制策略

摘要:针对大规模风电经电网换相型高压直流(LCC-HVDC)送出的送端电网所面临的严峻高频问题,充分挖掘风电潜在调频能力,提出一种风电与直流频率限制器(FLC)参与送端电网调频的协同控制策略。分析直流FLC参与送端电网调频的响应特性,刻画送端电网频率与风电机组功率的下垂关系,设计风电机组变转速与变桨距角相结合的一次调频控制方法。建立包括常规机组一次调频、风电机组下垂控制和直流FLC的频率响应综合模型,结合电网的频率稳定要求,采用灵敏度方法整定风电机组与直流FLC的调频参数,设计风电与直流FLC共同参与的频率协同控制策略。算例仿真结果表明:所提频率协同控制策略可有效降低高频切机、直流过载运行风险,提高送端电网的频率稳定性。 上海学校电网模拟设备方案

信息来源于互联网 本站不为信息真实性负责