哈尔滨动物神经元钙成像哪里买
紫外光激发Ca2+荧光探针:Fura-2和Indo-1都是紫外光激发的双波长Ca2+荧光指示剂,也是目前较常用的比率型钙离子荧光探针。与其他代的荧光指示剂相比,它们的荧光信号更强,对Ca2+的选择性也更强。比率指示剂会在与Ca2+结合后会改变吸收/发射特性。以双波长激发指示剂Fura-2为例。如图2所示,低Ca2+浓度下,Fura-2在~380nm处激发,高Ca2+浓度下,在~340nm处激发。光谱由两个峰组成:左侧较短波长的吸收峰随Ca2+浓度的增加而增大,右侧较长波长的吸收峰随Ca2+浓度的增加而减小。通过340/380nm交替激发,获取在510nm处对应的发射光荧光强度的比率,就可以对Ca2+浓度进行定量的测量。因为Fura-2结果准确,且不易被漂白,所以得到了普遍使用。钙离子在很多生理活动中都发挥着重要作用。哈尔滨动物神经元钙成像哪里买
利用钙成像技术记录大脑活动。随着功能光学成像技术的发展,神经学家们已经可以研究脑区和神经元内部的工作情况。功能钙成像技术就是其中之一,其主要原理是将外源性荧光信号和生理现象耦合起来——通过荧光染料信号的改变反映细胞内游离钙离子浓度,以此daibiao细胞的功能状态。目前它被广泛应用于实时监测一群相关神经元内钙离子的变化,从而判断其功能活动。该技术的出现使得科学家可以亲眼目睹神经信号在神经网络之中时间和空间上的传递穿梭。南京超微显微钙成像nVista3.0可以对深部脑区、皮层区域等大部分脑区进行钙成像使用钙离子指示蛋白。
传统的宽场荧光显微镜由于光散射的影响,只能够对大脑浅层的神经元或在离体组织上进行成像,共聚焦显微镜由于光损伤较大,一般也只用于离体钙成像。随着荧光显微镜技术的迅速发展,在体钙成像技术得到了蓬勃发展。双光子荧光显微镜能够在进行活动动物成像的时候实现高分辨率和高信噪比。例如,用双光子显微镜对海马树突棘的钙离子信号进行成像,研究神经元突触后长时程yizhi(Wangetal.,2000);观察活动小鼠运动皮层神经元在嗅觉选择任务中刺激相关电位(Komiyamaetal.,2010)等等。不过,这些实验还是需要对动物进行麻醉和固定,而神经科学领域很多研究更希望能够对自由活动的动物进行研究。
利用钙成像技术记录大脑活动,随着功能光学成像技术的发展,神经学家们已经可以研究脑区和神经元内部的工作情况。功能钙成像技术就是其中之一,其主要原理是将外源性荧光信号和生理现象耦合起来——通过荧光染料信号的改变反映细胞内游离钙离子浓度,以此细胞的功能状态。目前它被广泛应用于实时监测一群相关神经元内钙离子的变化,从而判断其功能活动。该技术的出现使得科学家可以亲眼目睹神经信号在神经网络之中时间和空间上的传递穿梭。钙成像技术被广泛应用于同时监测成百上千个神经元内钙离子的变化。
对于成像和长时间成像,较重要的是要保证细胞的正常生长。荧光团受激发光光照后产生的氧化物质与蛋白质、核酸和脂肪等发生反应,荧光信号降低的同时(光致退色)也降低了细胞寿命(光线损伤)。在光照过程中氧化剂的产生,主要决定于荧光团的光化学性质和光照剂量,因此减少光照剂量成为解决上述问题的途径之一。光漂白(Photobleaching)指在光的照射下荧光物质所激发出来的荧光强度随着时间推移逐步减弱乃至消失的现象。荧光成像的质量很大程度上依赖于荧光信号强度,提高激发光强度固然可以提高信号强度,但激发光的强度不是可以无限提高的,当激发光的强度超过一定限度时,光吸收就趋于饱和,并不可逆地破坏激发态分子,这就是光漂白现象。在显微技术中,光漂白使得观测变得很复杂,因为它会造成破坏,使萤光团无法继续放光,从而干扰实验结果。细胞内钙成像技术是通过向细胞内载入钙指示剂。神经细胞钙成像
通过钙成像技术发现神经元的活动与其内部的钙离子浓度密切相关。哈尔滨动物神经元钙成像哪里买
转基因Ca2+指示剂:转基因技术和光遗传技术的飞速发展,催生了基因编码的Ca2+指示剂(GECIs)。它们不依赖于荧光染料,可以靶向特定的组织,如神经细胞、心肌细胞、T细胞等,并且可以避免荧光指示剂带来的的许多问题,是监测转基因动物体内钙离子的一个极好的工具。个基因编码的钙离子指示剂Cameleon早在1997年就发表了。它是利用与钙离子结合后发生结构变化,作为供体的CFP和作为受体的YFP之间产生FRET的原理。2000年,GCaMP诞生了。它是增强型绿色荧光蛋白(EGFP)和钙调蛋白(结合钙离子)、钙调蛋白结合肽M13组成的,结合钙离子后,钙调素-M13相互作用引起GFP空间结构变化,发出绿色荧光(图5)。GCaMP的问世有着**性的意义,它改变了我们观察神经元群体活动的方式,让科学家们可以在成千上万的细胞中,看到哪些神经元在放电,它们放电的模式和规律是怎样的,从而进一步探索各种内在的神经机制。哈尔滨动物神经元钙成像哪里买
上一篇: 进口2PPLUS双光子显微镜最大分辨率