美国布鲁克双光子显微镜作用
从双光子的原理和特点我们就可以明显的得出双光子的优点:☆光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对细胞和组织的光损伤小,适用于长时间的研究;☆穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力,因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题;☆高分辨率:由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收局限于焦点处的体积约为波长3次方的范围内;☆漂白区域小:由于激发只存在于交点处,所以焦点以外的区域都不会发生光漂白现象;☆荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦),这样就提高了对荧光的收集率,而收集率的提高直接导致图像对比度的提高;☆图像对比度高:由于荧光波长小于入射波长,因而瑞利散射产生的背景噪声只有单光子激发时的1/16,降低了散射的干扰;☆光子跃迁具有很强的选择激发性,所以可以对生物组织中一些特殊物质进行成像研究;双光子显微镜使用的是高能量锁模脉冲器。美国布鲁克双光子显微镜作用
新一代微型化双光子荧光显微镜体积小,重只2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划重要团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统实现了微型双光子显微镜对脑科学领域较广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。 同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精细地操控神经元和神经回路的活动。美国布鲁克双光子显微镜作用双光子显微镜还可以对一些具有双光子特性的染料细胞进行特定实验;
目前,世界各国的脑科学研究如火如荼,中国的脑计划也即将启动。其中,关于全景式解析脑连接图谱和功能动态图谱的研究成为重点研究方向,而如何打破尺度壁垒,融合微观神经元和神经突触活动与大脑整体的信息处理和个体行为信息,是领域内亟待解决的一个关键挑战。2021年1月6日,由北京大学分子医学研究所牵头,联合北大信息科学技术学院电子学系、工学院以及中国人民******医学科学院等组成的跨学科团队,在NatureMethods在线发表题为“Miniaturetwo-photonmicroscopyforenlargedfield-of-view,multi-plane,andlong-termbrainimaging”的文章。文中报道了第二代微型化双光子荧光显微镜FHIRM-TPM2.0,其成像视野是该团队于2017年发布的低1代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。
使用基因编码的荧光探针可以在突触和细胞分辨率下监测体内神经元信号,这是揭示动物神经活动复杂机制的关键。使用双光子显微镜(2PM)可以以亚细胞分辨率对钙离子传感器和谷氨酸传感器成像,从而测量不透明大脑深处的活动;成像膜电压变化能直接反映神经元活动,但神经元活动的速度对于常规的2PM来说太快。目前电压成像主要通过宽场显微镜实现,但它的空间分辨率较差并且只是于浅层深度。因此要在不透明的大脑中以高空间分辨率对膜电压变化进行成像,需要较提高2PM的成像速率。FACED模块输出处的子脉冲序列可以看作从虚拟光源阵列发出的光,这些子脉冲在中继到显微镜物镜后形成了一个空间上分离且时间延迟的焦点阵列。然后将该模块并入具有高速数据采集系统的标准双光子荧光显微镜中,如图2所示。光源是具有1MHz重复频率的920nm的激光器,通过FACED模块可产生80个脉冲焦点,其脉冲时间间隔为2ns。这些焦点是虚拟源的图像,虚拟源越远,物镜处的光束尺寸越大,焦点越小。光束沿y轴比x轴能更好地充满物镜,从而导致x轴的横向分辨率为0.82µm,y轴的横向分辨率为0.35µm。双光子显微镜厂家有哪些?
双光子之源:飞秒激光双光子吸收理论早在1931年就由诺奖得主MariaGoeppertMayer提出,30年后因为有了激光才得到实验验证,但是到WinfriedDenk发明双光子显微镜又用了将近30年。要理解双光子的技术挑战和飞秒激光发挥的重要作用,首先要了解其中的非线性过程。双光子吸收相当于和频产生非线性过程,这要求极高的电场强度,而电场取决于聚焦光斑大小和激光脉宽。聚焦光斑越小,脉宽越窄,双光子吸收效率越高。对于衍射极限显微镜,聚焦在样品上的光斑大小只和物镜NA和激光波长有关,所以关键变量只剩下激光脉宽。基于以上分析,能够以高重频(100MHz)输出超短脉冲(100fs量级)的飞秒激光器成了双光子显微镜的标准激发光源。这也再次说明双光子显微镜的优势:只有焦平面处才能形成双光子吸收,而焦平面之外由于光强低无法被激发,所以双光子成像更清晰。双光子显微镜已成为较厚有生命体生物组织三维成像中不可或缺的工具。美国布鲁克双光子显微镜作用
双光子显微镜能够进行光裂解、光转染和光损伤等光学操纵。美国布鲁克双光子显微镜作用
2020年,临研所、病理科和科研处邀请北京大学王爱民副教授做了题目为“新一代微型双光子显微成像系统介绍及其在临床医疗诊断”的学术报告。学术报告由临研所医学实验研究平台潘琳老师主持。王爱民,北京大学信息科学技术学院副教授,毕业于北京大学物理系,获学士、硕士学位,后于英国巴斯大学物理系获博士学位。该研究组研发的微型双光子显微镜,第1次在国际上获得了小鼠大脑神经元和神经突触清晰稳定的动态信号,该成果获得了2017年度“中国光学进展”和“中国科学进展”,并被NatureMethods评为2018年度“年度方法--无限制行为动物成像”。目前,该研究组正在研究新一代双光子显微成像技术在临床诊断中的应用,为未来即时病理、离体组织检测、术中诊断等提供新的影像手段和分析方法。美国布鲁克双光子显微镜作用
下一篇: 国外激光荧光双光子显微镜商家