在线管道壁厚检测光谱共焦供应

时间:2024年03月03日 来源:

光谱共焦位移传感器是一种基于共焦原理,采用复色光作为光源的传感器,其测量精度可达到纳米级,适用于测量物体表面漫反射或反射的情况。此外,光谱共焦位移传感器还可以用于单向厚度测量透明物体。由于其具有高精度的测量位移特性,因此对于透明物体的单向厚度测量以及高精度的位移测量都有着很好的应用前景。本文将光谱共焦位移传感器应用于位移测量中,并通过实验验证,表明其能够满足高精度的位移测量要求,这对于将整个系统小型化、产品化具有重要意义。光谱共焦位移传感器广泛应用于制造领域,如半导体制造、精密机械制造等;在线管道壁厚检测光谱共焦供应

光谱共焦测量原理是使用多透镜光学系统将多色白光聚焦到目标表面上。透镜的排列方式是通过控制色差(像差)将白光分散成单色光。每个波长都有一定的偏差(特定距离)进行工厂校准。只有精确聚焦在目标表面或材料上的波长才能用于测量。通过共焦孔径反射到目标表面的光会被光谱仪检测并处理。漫反射表面和镜面反射表面都可以使用光谱共焦原理进行测量。共焦测量提供纳米级分辨率,并且几乎与目标材料分开运行。传感器的测量范围内有一个非常小的、恒定的光斑尺寸。微型径向和轴向共焦版本可用于测量钻孔或钻孔内壁的表面,以及测量窄孔、小间隙和空腔。小型光谱共焦常用解决方案光谱共焦技术具有轴向按层分析功能;

光谱共焦技术将轴向距离与波长建立起一套编码规则,是一种高精度、非接触式的光学测量技术。基于光谱共焦技术的传感器作为一种亚微米级、快速精确测量的传感器,已经被大量应用于表面微观形状、厚度测量、位移测量、在线监控及过程控制等工业测量领域。展望其未来,随着光谱共焦传感技术的发展,必将在微电子、线宽测量、纳米测试、超精密几何量计量测试等领域得到更多的应用。光谱共焦技术是在共焦显微术基础上发展而来,其无需轴向扫描,直接由波长对应轴向距离信息,从而大幅提高测量速度。

随着机械加工水平的进步,各种的微小的复杂工件都需要进行精密尺寸测量与轮廓测量,例如:小工件内壁沟槽尺寸、小圆倒角等的测量,对于某些精密光学元件可以进行非接触的轮廓形貌测量,避免在接触测量时划伤光学表面,解决了传统传感器很难解决的测量难题。一些精密光学元件也需要进行非接触的轮廓形貌测量,以避免接触测量时划伤光学表面。这些用传统传感器难以解决的测量难题,均可用光谱共焦传感器搭建测量系统以解决。通过自行塔建的二维纳米测量定位装置,选用光谱其焦传感器作为测头,实现测量超精密零件的二维尺寸,滚针对涡轮盘轮廓度检测的问题,利用光谱共焦式位移传感器使得涡轮盘轮廓度在线检测系统的设计能够得以实现。与此同时,在进行几何量的整体测量过程中,还需要采取多种不同的方式对其结构体系进行优化。从而让几何尺寸的测量更为准确。光谱共焦位移传感器可以实现对材料的表面形貌进行高精度测量,对于研究材料的表面性质具有重要意义;

光谱共焦测量技术是共焦原理和编码技术的结合。白色光源和光谱仪可以完成一个相对高度范围的准确测量。光谱共焦位移传感器的准确测量原理如图1所示。在光纤和超色差镜片的帮助下,产生一系列连续而不重合的可见光聚焦点。当待测物体放置在检测范围内时,只有一种光波长能够聚焦在待测物表面并反射回来,产生波峰信号。其他波长将失去对焦。使用干涉仪的校准信息可以计算待测物体的位置,并创建对应于光谱峰处波长偏移的编码。超色差镜片通过提高纵向色差,可以在径向分离出电子光学信号的不同光谱成分,因此是传感器的关键部件,其设计方案非常重要。光谱共焦技术在材料科学领域可以用于材料的性能测试和分析;线阵光谱共焦测厚度

光谱共焦技术有着较大的应用前景;在线管道壁厚检测光谱共焦供应

本文通过对比测试方法,考核了基于白光共焦光谱技术的靶丸外表面轮廓测量精度。图5(a)比较了原子力显微镜轮廓仪和白光共焦光谱轮廓仪测量曲线,二者低阶轮廓整体相似性高,但在靶丸赤道附近的高频段轮廓测量上存在一定的偏差。此外,白光共焦光谱的信噪比也相对较低,只适合测量靶丸表面低阶的轮廓误差。图5(b)比较了原子力显微镜轮廓仪测量数据和白光共焦光谱轮廓仪测量数据的功率谱曲线,发现两种方法在模数低于100的功率谱范围内测量结果一致性较好,但当模数大于100时,白光共焦光谱的测量数据大于原子力显微镜的测量数据,这反映了白光共焦光谱仪在高频段测量数据信噪比相对较差的特点。由于共焦光谱检测数据受多种因素影响,高频随机噪声可达100nm左右。在线管道壁厚检测光谱共焦供应

信息来源于互联网 本站不为信息真实性负责