自动化数字信号测试维修

时间:2024年04月21日 来源:

伪随机码型(PRBS)

在进行数字接口的测试时,有时会用到一些特定的测试码型。比如我们在进行信号质量测试时,如果被测件发送的只是一些规律跳变的码型,可能不了真实通信时的恶劣情况,所以测试时我们会希望被测件发出的数据尽可能地随机以恶劣的情况。同时,因为这种数据流很多时候只是为了测试使用的,用户的被测件在正常工作时还是要根据特定的协议发送真实的数据流,因此产生这种随机数据码流的电路比较好尽可能简单,不要额外占用太多的硬件资源。那么怎么用简单的方法产生尽可能随机一些的数据流输出呢?首先,因为真正随机的码流是很难用简单的电路实现的,所以我们只需要生成尽可能随机的码流就可以了,其中常用的一种数据码流是PRBS(PseudoRandomBinarySequence,伪随机码)码流。PRBS码的产生非常简单,图1.21是PRBS7的产生原理,只需要用到7个移位寄存器和简单的异或门就可以实现。 模拟信号和数字信号的差异;自动化数字信号测试维修

自动化数字信号测试维修,数字信号测试

这种方法由于不需要单独的时钟走线,各对差分线可以采用各自的CDR电路,所以对各对线的等长要求不太严格(即使要求严格也很容易实现,因为走线数量减少,而且信号都是点对点传输)。为了把时钟信息嵌在数据流里,需要对数据进行编码,比较常用的编码方式有ANSI的8b/10b编码、64b/66b编码、曼彻斯特编码、特殊的数据编码以及对数据进行加扰等。

嵌入式时钟结构的关键在于CDR电路,CDR的工作原理如图1.17所示。CDR通常用一个PLL电路实现,可以从数据中提取时钟。PLL电路通过鉴相器(PhaseDetector)比较输入信号和本地VCO(压控振荡器)间的相差,并把相差信息通过环路滤波器(Filter)滤波后转换成低频的对VCO的控制电压信号,通过不断的比较和调整终实现本地VCO对输入信号的时钟锁定。 自动化数字信号测试维修数字信号幅度测试的定义;

自动化数字信号测试维修,数字信号测试

采用串行总线以后,就单根线来说,由于上面要传输原来多根线传输的数据,所以其工作速率一般要比相应的并行总线高很多。比如以前计算机上的扩展槽上使用的PCI总线采用并行32位的数据线,每根数据线上的数据传输速率是33Mbps,演变到PCle(PCI-express)的串行版本后每根线上的数据速率至少是2.5Gbps(PCIel.0代标准),现在PCIe的数据速率已经达到了16Gbps(PCIe4.0代标准)或32Gbps(PCIe5.0代标准)。采用串行总线的另一个好处是在提高数据传输速率的同时节省了布线空间,芯片的功耗也降低了,所以在现代的电子设备中,当需要进行高速数据传输时,使用串行总线的越来越多。

数据速率提高以后,对于阻抗匹配、线路损耗和抖动的要求就更高,稍不注意就很容易产生信号质量的问题。图1.10是一个典型的1Gbps的信号从发送端经过芯片封装、PCB、连接器、背板传输到接收端的信号路径,可以看到在发送端的接近理想的0、1跳变的数字信号到达接收端后由于高频损耗、反射等的影响,信号波形已经变得非常恶劣,所以串行总线的设计对于数字电路工程师来说是一个很大的挑战。

对于并行总线来说,更致命的是这种总线上通常挂有多个设备,且读写共用,各种信号分叉造成的反射问题使得信号质量进一步恶化。

为了解决并行总线占用尺寸过大且对布线等长要求过于苛刻的问题,随着芯片技术的发展和速度的提升,越来越多的数字接口开始采用串行总线。所谓串行总线,就是并行的数据在总线上不再是并行地传输,而是时分复用在一根或几根线上传输。比如在并行总线上 传输1Byte的数据宽度需要8根线,而如果把这8根线上的信号时分复用在一根线上就可 以减少需要的走线数量,同时也不需要再考虑8根线之间的等长关系。 数字信号上升时间是示波器中进行上升时间测量例子,光标交叉点指示出上升时间测量的起始点和结束点的位置;

自动化数字信号测试维修,数字信号测试

数字信号的建立/保持时间(Setup/HoldTime)

不论数字信号的上升沿是陡还是缓,在信号跳变时总会有一段过渡时间处于逻辑判决阈值的上限和下限之间,从而造成逻辑的不确定状态。更糟糕的是,通常的数字信号都不只一路,可能是多路信号一起传输来一些逻辑和功能状态。这些多路信号之间由于电气特性的不完全一致以及PCB走线路径长短的不同,在到达其接收端时会存在不同的时延,时延的不同会进一步增加逻辑状态的不确定性。

由于我们感兴趣的逻辑状态通常是信号电平稳定以后的状态而不是跳变时所的状态,所以现在大部分数字电路采用同步电路,即系统中有一个统一的工作时钟对信号进行采样。如图1.5所示,虽然信号在跳变过程中可能会有不确定的逻辑状态,但是若我们只在时钟CLK的上升沿对信号进行判决采样,则得到的就是稳定的逻辑状态。 高速数字接口原理与测试;自动化数字信号测试维修

幅度测量是数字信号常用的测量,也是很多其他参数侧鲁昂的基础。自动化数字信号测试维修

要想得到零边沿时间的理想方波,理论上是需要无穷大频率的频率分量。如果比较高只考虑到某个频率点处的频率分量,则来出的时域波形边沿时间会蜕化,会使得边沿时间增大。例如,一个频率为500MHz的理想方波,其5次谐波分量是2500M,如果把5次谐波以内所有分量成时域信号,贝U其边沿时间大概是0.35/2500M=0.14ns,即140ps。

我们可以把数字信号假设为一个时间轴上无穷的梯形波的周期信号,它的傅里叶变换

对应于每个频率点的正弦波的幅度,我们可以勾勒出虚线所示的频谱包络线, 可以看到它有两个转折频率分别对应1/材和1/”(刁是半周期,。是边沿时间)

从1/叫转折频率开始,频谱的谐波分量是按I/?下降的,也就是-40dB/dec (-40分贝每 十倍频,即每增大十倍频率,谐波分量减小100倍)。可以看到相对于理想方波,从这个频 率开始,信号的谐波分量大大减小。 自动化数字信号测试维修

信息来源于互联网 本站不为信息真实性负责