贵州数字信号测试USB测试

时间:2024年07月03日 来源:

数字信号的预加重(Pre-emphasis)


如前所述,很多常用的电路板材料或者电缆在高频时都会呈现出高损耗的特性。目前的高速串行总线速度不断提升,使得流行的电路板材料达到极限从而对信号有较大的损耗,这可能导致接收端的信号极其恶劣以至于无法正确还原和解码信号,从而出现传输误码。如果我们观察高速的数字信号经过长的传输通道传输后到达接收端的眼图,它可能是闭合的或者接近闭合的。因此工程师可以有两种选择:一种是在设计中使用较为昂贵的电路板材料;另一种是仍然沿用现有材料,但采用某种技术来补偿传输通道的损耗影响。考虑到在高速率的情况下低损耗的电路板材料和电缆的成本过高,我们通常会优先尝试相应的信号补偿技术,预加重(Pre-emphasis)和均衡就是高速数字电路中常用的两种信号补偿技术。
数字信号幅度测试的定义;贵州数字信号测试USB测试

贵州数字信号测试USB测试,数字信号测试

简单的预加重对信号的频谱改善并不是完美的,比如其频率响应曲线并不一定与实际 的传输通道的损耗曲线相匹配,所以高速率总线会采用阶数更高、更复杂的预加重技术。 图1.28所示是一个3阶的预加重,其除了对跳变沿后面的第1个比特进行预加重处理外,跳变沿 之后的第2个比特的幅度也有变化。跳变沿后第1个比特的幅度变化有时也叫Post Cursorl,

跳变沿后的第2个比特的幅度变化有时也叫Post Cursor2。有些总线如PCIe3.0,会对跳变 沿前面的1个比特的幅度也进行调整,叫作Pre Cursor1,有时也称为PreShoot。 贵州数字信号测试USB测试数字信号的抖动(Jitter);

贵州数字信号测试USB测试,数字信号测试

时间偏差的衡量方法。由于信号边沿的时间偏差可能是由于各种因素造成的,有随机的噪声,还有确定性的干扰。所以这个时间偏差通常不是一个恒定值,而是有一定的统计分布,在不同的应用场合这个测量的结果可能是用有效值(RMS)衡量,也可能是用峰-峰值(peak-peak)衡量,更复杂的场合还会对这个时间偏差的各个成分进行分解和估计。因此抖动的精确测量需要大量的样本以及复杂的算法。对抖动进行衡量和测量时,需要特别注意的是,即使对于同一个信号,如果用不同的方法进行衡量,得到的抖动测量结果也可能不一样,下面是几种常用的抖动测量项目。

采用前向时钟的总线因为有专门的时钟通路,不需要再对数据进行编解码,所以总线效率一般都比较高。还有一个优点是线路噪声和抖动对于时钟和数据线的影响基本是一样的(因为走线通常都在一起),所以对系统的影响可以消除到小。

嵌入式时钟的电路对于线路上的高频抖动非常敏感,而采用前向时钟的电路对高频抖动的敏感度就相对小得多。前向时钟总线典型的数据速率在500Mbps~12Gbps.

在前向时钟的拓扑总线中,时钟速率通常是数据速率的一半(也有采用1/4速率、1/10或其他速率的),数据在上下边沿都采样,也就是通常所说的DDR方式。使用DDR采样的好处是时钟线和数据线在设计上需要的带宽是一样的,任何设计上的局限性(比如传输线的衰减特性)对于时钟和数据线的影响是一样的。

前向时钟在一些关注效率、实时性,同时需要高吞吐量的总线上应用比较,比如DDR总线、GDDR总线、HDMI总线、Intel公司CPU互连的QPI/UPI总线等。 数字信号电平范围象征的逻辑状态;

贵州数字信号测试USB测试,数字信号测试

数字信号的上升时间(Rising Time)

任何一个真实的数字信号在由一个逻辑电平状态跳转到另一个逻辑电平状态时,其中间的过渡时间都不会是无限短的。信号电平跳变的过渡时间越短,说明信号边沿越陡。我们通常使用上升时间(RisingTime)这个参数来衡量信号边沿的陡缓程度,通常上升时间是指数字信号由幅度的10%增加到幅度的90%所花的时间(也有些场合会使用20%~80%的上升时间或其他标准)。上升时间越短,说明信号越陡峭。大部分数字信号的下降时间(信号从幅度的90%下降到幅度的10%所花的时间)和上升时间差不多(也有例外)。图1.2比较了两种不同上升时间的数字信号。上升时间可以客观反映信号边沿的陡缓程度,而且由于计算和测量简单,所以得到的应用。对有些非常高速的串行数字信号,如PCIe、USB3.0、100G以太网等信号,由于信号速率很高,传输线对信号的损耗很大,信号波形中很难找到稳定的幅度10%和90%的位置,所以有时也会用幅度20%~80%的上升时间来衡量信号的陡缓程度。通常速率越高的信号其上升时间也会更陡一些(但不一定速率低的信号上升时间一定就缓),上升时间是数字信号分析中的一个非常重要的概念,后面我们会反复提及和用到这个概念。 真实的数字信号频谱;贵州数字信号测试USB测试

高速数字接口原理与测试;贵州数字信号测试USB测试

基本上可以看到数字信号的频域分量大部分集中在1/7U,这个频率以下,我们可以将这个频率称之为信号的带宽,工程上可以近似为0.35/0,当对设计要求严格的时候,也可近似为0.5/rro

也就是说,叠加信号带宽(0.35/。)以下的频率分量基本上可以复现边沿时间是tr的数字时;域波形信号。这个频率通常也叫作转折频率或截止频率(Fknee或cutofffrequency)

*信号的能量大部分集中在信号带宽以下,意味着我们在考虑这个信号的传输效应时,主要关注比较高频率可以到信号的带宽。

所以,假如在数字信号的传输过程中可以保证在信号的带宽(0.35亿)以下的频率分量(模拟信号)经过互连路径的质量,则我们可以保证接收到比较完整的数字信号。

然而,我们会在下面看到在考虑信号完整性问题时由于传输路径阻抗不连续对信号的反射,损耗随频率的增加而增加的特性等因素,这些频率分量在传输时会有畸变,从而造成接收到的各个频率的分量叠加在时并不能完全保证复现原有的时域的数字信号。 贵州数字信号测试USB测试

信息来源于互联网 本站不为信息真实性负责