天津微型红外透镜材料

时间:2023年05月18日 来源:

d4)的多个vcsel的第四区域608。孔径宽度d1-d4中的每个孔径宽度可以彼此相差相同的数量。例如,孔径宽度d1-d4中的每个孔径宽度可以相差500nm、1μm、2μm、或3μm。在另一示例中,孔径宽度d1-d4可以是给定范围(例如,1μm到10μm)内的任意值。在所示出的具有不同孔径宽度的vcsel阵列的四个区域的示例中(产生四个不同的斑点图案),总斑点噪声降低大约50%尽管图6示出了*四个区域,但是衬底302的表面上可包括分别具有给定孔径宽度的vcsel阵列的任意数目的区域。另外,每个区域可以具有任何形状或大小。在一些实施例中,任意区域可以部分或完全地与任何其他区域重叠。亚波长结构集成与几何光学相比,亚波长结构(sws)提供了在更小的尺度上实现几乎平坦的无相差光学的可能。sws可以由操纵光的波阵面、极化、或强度的亚波长散射器阵列构成。像大多数基于衍射的光学设备一样,sws通常被设计为比较好在一个波长或窄波长范围内操作。sws的一个示例包括电介质传输阵列,该电介质传输阵列提供偏振和相位的亚波长空间控制和高发射。这些设备基于制造在平面衬底上的具有不同几何形状的高折射率介电纳米谐振器(散射器)的亚波长阵列。具有各种几何形状的散射器向所发送的光赋予不同的相位。菲涅尔透镜聚光技术规范。天津微型红外透镜材料

菲涅尔透镜的应用菲涅尔透镜是透镜的一个分支,由于它同其他的透镜相比,具有体积小,重量轻,结构紧凑的优点,同时它拥有不逊于其它透镜的良好聚光性和成像性能,因此在**、航空、空间、工业生产和民用等各个领域获得***的应用。菲涅尔透镜应用在投影系统中的优势就是,通过聚焦或调整光线准直从而增加增体显示亮度,如果取消准直镜,光线在穿过面板时会大量损失,显示中会出现明显的热斑效应,降低显示屏幕四周亮度。同样,在LCD屏幕的另一面,我们也必须将光线从面板上集中到投影透镜中。在观看屏幕前使用菲涅尔透镜所增加的亮度,在下图中看光线分布。比较常用的是以下几个方面的应用:菲涅尔透镜被证明比较好应用就是在投影系统中,其作用就是准直光线和聚焦光线。菲涅尔透镜将光源发出的束光源调整为平行光,显著提高显示面板四周亮度,消除了太阳斑效应,从而提高整体显示亮度均匀性。通常菲涅尔透镜与其他显示元件(如柱面镜)一起使用。菲涅尔透镜应用在投影系统中的优势就是,通过聚焦或调整光线准直从而增加增体显示亮度,如果取消准直镜,光线在穿过面板时会大量损失,显示中会出现明显的热斑效应,降低显示屏幕四周亮度。吉林人体红外透镜材料菲涅尔透镜的应用发展趋势。

图10示出了根据本公开的实施例的使用亚波长结构的元分子的示例。图11是示出根据本文公开的某些实施例的从用在光投影仪系统中的光源发射辐射的方法的流程图。尽管将参考说明性实施例继续下面的详细描述,但是根据本公开,很多替代、修改、和变形将是明显的。具体实施方式用在结构化光投影仪中的激光源包括衬底、衬底上的一个或多个***vcsel、以及衬底上的一个或多个第二vcsel。一个或多个***vcsel各自具有***孔径宽度并且各自单独地在衬底的表面上延伸。一个或多个第二vcsel各自具有不同于***孔径宽度的第二孔径宽度并且各自单独地在衬底的表面上延伸。根据一些实施例,可以使用光刻技术对***vcsel和第二vcsel进行图案化。使用具有不同孔径宽度的vcsel的阵列提供了具有不同波长的发射辐射,从而提供了不同的斑点图案。当在检测器上被接收时不同的斑点图案被平均,此时斑点噪声减小。vcsel还可以包括多个亚波长结构以操控光输出。这种亚波长结构还可以用在包括标准vcsel在内的其他vcsel的表面上。在任意这些情况中,激光源可以与图像传感器结合在一起,以提供光投影仪系统。总体概述如上所述,仍然有与结构化光照明(sli)相关联的很多未解决的问题。更具体地。

为高斯声波经过聚焦透镜的声压场测试结果,(c)为高斯声波经过发散透镜的声压场测试结果,(d)为高斯声波经过偏折透镜的声压场测试结果,(e)为高斯声波经过高透射透镜的声压场测试结果;图9是本实用新型实施例中旋转可调的多功能二维声学超材料透镜在4000hz下的实验结果,(a)为高斯声波在空气中的声压场测试结果,(b)为高斯声波经过聚焦透镜的声压场测试结果,(c)为高斯声波经过发散透镜的声压场测试结果,(d)为高斯声波经过偏折透镜的声压场测试结果,(e)为高斯声波经过高透射透镜的声压场测试结果;图10是本实用新型实施例中旋转可调的多功能二维声学超材料透镜在9000hz下的实验结果,(a)为高斯声波在空气中的声压场测试结果,(b)为高斯声波经过聚焦透镜的声压场测试结果,(c)为高斯声波经过发散透镜的声压场测试结果,(d)为高斯声波经过偏折透镜的声压场测试结果,(e)为高斯声波经过高透射透镜的声压场测试结果。具体实施方式下面结合实施例和说明书附图对本实用新型作进一步的说明。以下实施例*是本实用新型的推荐实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和等同替换。菲涅尔透镜厚度检测技术。

本申请大体涉及成像领域,具体地涉及高计算效率的结构化光成像系统。背景技术:创建3d图像的一种途径被称为结构化光照明(sli)技术。在sli技术中,光图案被投射到3d物体表面上。sli系统包括相机和投影仪(照明器)。3d物体被放置在与投影仪和相机相距预定距离的参考平面上。在使用中,投影仪将结构化光图案投射到3d物体表面上。结构化光图案可以是一系列条纹线或网格或任何其他图案。当结构化光图案被投射到3d物体表面上时,其被3d物体表面扭曲。相机捕捉在结构化光图案中具有的扭曲的3d物体表面的图像。然后,图像被存储在图像文件中,以供图像处理设备处理。在一些情况下,多个结构化光图案被投影仪(照明器)投射到3d物体表面上,并且具有结构化光图案的3d物体的多个图像被相机捕捉。在图像文件的处理期间,对结构化光图案中的扭曲进行分析,并且执行计算以确定3d物体表面上的各个点相对于参考表面的参考测量结果。这种图像处理使用标准测距或三角测量方法。相机和投影图案之间的三角测量角导致与表面的深度直接相关的扭曲。一旦这些测距技术被用来确定3d物体表面上的多个点的位置,则3d物体的3d数据表示即可被创建。3d物体的数字再造在包括图像识别(例如。菲涅尔透镜的焦距答疑解惑;浙江远红外透镜按需定制

菲涅尔透镜规格厂家供应。天津微型红外透镜材料

可以实现多种功能,例如聚焦、发散、偏折、贝塞尔透镜、高透射率等;(2)本实用新型的可调二维声学超材料透镜使用了机械旋转的可调机制,这是一种实时的调控方式,二维声学超材料透镜的各种功能可以随着单元结构的旋转实时变化;(3)本实用新型的可调二维声学超材料透镜设计简单,所有单元都是几何结构、尺寸相同的c型单元结构,样品的加工由3d打印技术实现,加工方便,机械旋转的调节机制相比于温度、嵌入式电磁铁、压电材料、薄膜结构等调节机制相比结构简单,易于实现;(4)本实用新型的可调二维声学超材料透镜的原材料采用光敏树脂,制得的声学聚焦透镜具有轻质量和低成本的特点;(5)本实用新型的可调二维声学超材料透镜的具有宽带特性,在宽频带范围内各种功能均具有良好的效果;(6)与传统的声学透镜相比,本实用新型的可调二维声学超材料透镜结构简单灵活,有良好的通用性,通过改变结构的尺寸便可设计在不同工作频点,整个透镜为平面结构,相比其他透镜,易集成,适于推广应用。附图说明图1是本实用新型实施例中旋转可调的多功能二维声学超材料透镜的三维示意图;图2是本实用新型实施例中旋转可调的多功能二维声学超材料透镜的c型单元结构示意图,。天津微型红外透镜材料

深圳市芯华利实业有限公司位于福城街道办章阁社区诚基工业园A栋5楼,拥有一支专业的技术团队。专业的团队大多数员工都有多年工作经验,熟悉行业专业知识技能,致力于发展芯华利,普恩,新加坡雅捷信的品牌。公司以用心服务为重点价值,希望通过我们的专业水平和不懈努力,将生产菲涅尔透镜,红外感应透镜,人体感应透镜,人体红外透镜,菲涅尔透镜片,红外感应罩子,感应透镜,红外透镜,菲涅尔镜片,PIR透镜,Frensnel lens,PIR lens; 数字红外传感器,数字热释电传感器,数字集成传感器,热释电红外传感器,人体感应方案,红外感应方案,红外感应IC芯片,人体感应模块,红外感应模块,人体红外传感器,红外感应开关,电容感应方案,电容感应开关,隔空感应方案,隔空感应模块,远距离感应模块,接近感应模块,微波摇控方案,人体摇控方案,红外摇控方案,微波感应模块,微波感应开关,楼梯感应开关,CDS光敏电阻,热敏电阻,气体传感器,超声波传感器,离子烟雾传感器,人体感应芯片,人体感应IC,红外感应IC,红外感应芯片,工业级感应芯片,工业级红外芯片,人体感应开关,红外光电开关,手扫开关,接触开关/AS081/BISS0001/LP8072C/D203S/LP0001/M7616/M7612/NIS-07/RE200B/RE200B-P/D203S/D203B/RD-622/RD-623/LHI778/LHI878/LHI968/HIS-07/PIR sensor等业务进行到底。芯华利实业始终以质量为发展,把顾客的满意作为公司发展的动力,致力于为顾客带来***的微波雷达感应模块(传感器,红外人体感应模块,菲涅尔镜片,PIR透镜,单面、双面、多层PCB板。

信息来源于互联网 本站不为信息真实性负责