多孔氮化铝粉体厂家电话

时间:2022年04月25日 来源:

在现有可作为基板材料使用的陶瓷材料中,Si3N4陶瓷抗弯强度很高,耐磨性好,是综合机械性能很好的陶瓷材料,同时其热膨胀系数很小,因而被很多人认为是一种很有潜力的功率器件封装基片材料。但是其制备工艺复杂,成本较高,热导率偏低,主要适合应用于强度要求较高但散热要求不高的领域。而氮化铝各方面性能同样也非常,尤其是在电子封装对热导率的要求方面,氮化铝优势巨大。不足的是,较高成本的原料和工艺使得氮化铝陶瓷价格很高,这是制约氮化铝基板发展的主要问题。但是随着氮化铝制备技术的不断发展,其成本必定会有所降低,氮化铝陶瓷基板在大功率LED领域大面积应用指日可待。氮化铝是纤锌矿型的晶体结构,无毒,呈白色或灰白色。多孔氮化铝粉体厂家电话

多孔氮化铝粉体厂家电话,氮化铝

氮化铝陶瓷的注射成型:排胶工艺,由于注射成型坯体中有机物含量较高,排胶过快会造成坯体开裂、起泡、分层和变形,因此,如何快速高效排胶成为注射成型的一大难点。排胶工艺包括热排胶和溶剂排胶。起初主要采用热排胶,简单地把有机物烧除,这种方式能耗高、时间长。为了提高排胶效率,一些学者探索了溶剂排胶的工艺。由于粘结剂中石蜡占比重较大,溶剂排胶主要是将坯体中的石蜡溶解,其他粘结剂仍能维持坯体形状。溶剂排胶结合热工艺排胶可以缩短排胶时间。注射成型的工艺特点:可近净尺寸成型各种复杂形状,很少(或无需)进行机械加工;成型产品生坯密度均匀,且表面光洁度及强度高;成型产品烧结体性能优异且一致性好;易于实现机械化和自动化生产,生产效率高。天津纳米氧化铝氮化铝有较高的传热能力,至使氮化铝被大量应用于微电子学。

多孔氮化铝粉体厂家电话,氮化铝

氮化铝的热传导机理:热导率,也即导热系数,作为衡量物质导热能力的量度,是导热材料很重要的性质之一。AIN属于共价化合物,其分子内部没有可自由移动的电子,因此热量的传递是以晶格振动这种形式来实现的,这种方式叫“声子传热”。晶体内部温度高的部分能量大,温度低的部分能量小,能量通过声子之间互相作用,从高能量向低能量发生传递,能量的迁移导致热量的传导。可以看到,把晶格内部的原子看成小球,这些小球之间彼此由弹簧(共价键)连接起来,从而每个原子的振动都要牵动周围的原子,使振动以弹性波的形式在晶体中传播。这种晶格振动产生的能量量子,即“声子”,声子相互作用使振动传递,从而使能量迁移,传导热量。

氮化铝基板材料热膨胀系数(4.6×10-6/K)与SiC芯片热膨胀系数(4.5×10-6/K)相近,导热率系数大(170-230W/m▪K),绝缘性能优异,可以适应SiC的应用要求,是搭载SiC半导体的理想基板材料。以往,氮化铝基板主要通过如下工艺制备:在氮化铝粉末中混合煅烧助剂、粘合剂、增塑剂、分散介质、脱模机等添加剂,通过挤出成型在空气中或氮等非氧化性气氛中加热到350-700℃而将粘合剂去除后(脱脂),在1800-1900℃的氮等非氧化性气氛中保持0.5-10小时的(煅烧)。该法制备氮化铝基板的缺陷:通过上述工艺制备出来的氮化铝基板材料,其击穿电压在室温下显示为30-40kV/mm左右的高绝缘性,但在400℃的高温下则降低到10kV/mm左右。在高温下具备优异绝缘特性的氮化铝基板的制备方法。通过该法可制备出耐高温氮化铝基板材料具有如下特点:氮化铝晶粒平均大小为2-5μm;热导率为170W/m▪K以上;不含枝状晶界相;在400℃下的击穿电压为30kV/mm以上。高温自蔓延合成法的本质与铝粉直接氮化法相同,但该法不需要在高温下对Al粉进行氮化。

多孔氮化铝粉体厂家电话,氮化铝

AlN陶瓷基片一般采用无压烧结,该烧结方法是一种很普通的烧结,虽然工艺简单、成本较低、可制备形状复杂,但烧结温度一般偏高,再不添加烧结助剂的情况下,一般无法制备高性能陶瓷基片。传统烧结方式一般通过外部热源对AlN坯体进行加热,热传导不均且速度较慢,将影响烧结质量。微波烧结通过坯体吸收微波能量从而进行自身加热,加热过程是在整个材料内部同时进行,升温速度快,温度分散均匀,防止AlN陶瓷晶粒的过度生长。这种快速烧结技术能充分发挥亚微米级和纳米级粉末的性能,具有很强的发展前景。放电等离子烧结技术主要利用放电脉冲压力、脉冲能和焦耳热产生瞬间高温场实现快速烧结。放电等离子烧结技术的主要特点是升温速度快,烧结时间短,烧结温度低,可实现AlN陶瓷的快速低温烧结。通过该烧结方法,烧结体的各个颗粒可类似于微波烧结那样均匀地自身发热以活化颗粒表面,可在短时间内得到致密化、高热导烧结体。氮化铝室温下与水缓慢反应.可由铝粉在氨或氮气氛中800~1000℃合成,产物为白色到灰蓝色粉末。天津纳米氧化铝

氮化铝具有不受铝液和其它熔融金属及砷化镓侵蚀的特性,特别是对熔融铝液具有极好的耐侵蚀性。多孔氮化铝粉体厂家电话

AlN陶瓷金属化的方法主要有:厚膜金属化法是在陶瓷基板上通过丝网印刷形成封接用金属层、导体(电路布线)及电阻等,通过烧结形成钎焊金属层、电路及引线接点等。厚膜金属化的步骤一般包括:图案设计,原图、浆料的制备,丝网印刷,干燥与烧结。厚膜法的优点是导电性能好,工艺简单,适用于自动化和多品种小批量生产,但结合强度不高,且受温度影响大,高温时结合强度很低。直接覆铜法利用高温熔融扩散工艺将陶瓷基板与高纯无氧铜覆接到一起,所形成的金属层具有导热性好、附着强度高、机械性能优良、便于刻蚀、绝缘性及热循环能力高的优点,但是后续也需要图形化工艺,同时对AlN进行表面热处理时形成的氧化物层会降低AlN基板的热导率。多孔氮化铝粉体厂家电话

信息来源于互联网 本站不为信息真实性负责