浙江新型厌氧反应器设计规范

时间:2023年10月16日 来源:

水解产酸菌与产甲烷菌的关系:

水解产酸菌与产甲烷菌的代谢相互协同又相互制约。厌氧消化是许多厌氧细菌混合在一起进行的发酵过程。各类微生物的代谢不是孤立进行的,而是在一个复杂的共生系统中同时进行的。每种微生物的代谢都处于相互影响、相互协同又相互制约的过程中。在厌氧消化过程中,各类微生物之间的关系主要反映在它们对有机物的协同利用上。它们相互合作,把各种碳链较长的、结构复杂的有机物逐步分解成碳链较短的、结构简单的有机物,直至由产甲烷菌将它们转变成只含1个碳原子的化合物甲烷和二氧化碳。这种协同关系具体表现在水解产酸菌为产甲烷菌提供生长和产甲烷所需要的基质;产甲烷菌为水解产酸菌消除有机酸和氢的伤害、并提供促进生长的因子;水解发酵细菌、产乙酸菌和产甲烷菌相互制约。 典型的ASBR运行周期包括四个阶段。浙江新型厌氧反应器设计规范

厌氧反应器

厌氧反应器处理的四个阶段:即厌氧消化过程分为水解阶段、酸化阶段、产乙酸产氢阶段、产甲烷阶段四个部分。水解阶段:微生物菌体分泌胞外水解酶,将碳氢化合物、脂肪和蛋白质转化为单糖、氨基酸和长链脂肪酸(LCFA);酸化阶段:水解阶段的产物在酸化微生物菌群的作用下降解为戊酸、丁酸、丙酸、乙酸、二氧化碳和氢;产乙酸产氢阶段,功能微生物菌群将戊酸等转化为甲烷细菌可以直接利用的基质-乙酸、二氧化碳和氢;在的产甲烷阶段,产甲烷细菌将乙酸、氢与二氧化碳转化为甲烷和二氧化碳,并伴随着微生物的生长与衰亡,在此同时,系统内的硫酸盐或硝酸盐在硫酸盐还原菌或反硝化菌的作用下,以乙酸或氢作为电子供体,被还原成硫化氢或氮气。武汉完全混合式厌氧反应器设计规范塞流式厌氧反应器运行方便,故障少,管理简单,稳定性好。

浙江新型厌氧反应器设计规范,厌氧反应器

EGSB厌氧反应器的工艺特点:EGSB与UASB反应器的结构相似,不同的是EGSB反应器采用相当高的上流速度,因此,在EGSB反应器中颗粒污泥处于完全或部分“膨胀化”的状态,即污泥床的体积由于颗粒之间平均距离的增加而扩大。为了提高上升速度,EGSB反应器采用较大的高度与直径比和很大的回流比。工艺优点:1、在高速上升速度和产气的搅拌作用下,废水与颗粒污泥接触更充分。2、水力停留时间短,反应器有机负荷和处理效率高,高负荷有利于颗粒长大,高的剪切力有利于形成更光滑和更密实的生物膜。3、高径比大,占地面积有效缩小。4、均匀布水,污泥处于膨胀状态,不易产生沟流和死角。在处理低浓度有机废水方面具有非常明显的优势。

防止污泥厌氧污泥流失的方法:(1)控制反应器的容积负荷,容积负荷决定了反应器的进水量与沼气产量,控制容积负荷也就是控制造成污泥流失的产气负荷和水力负荷,在容积负荷相同的情况下,反应器越高,表面产气负荷越大,污泥越容易流失;(2)引入污泥流失指数,将每天的污泥流失量与生成量进行比较,始终保持污泥的生成量大于污泥的流失量;(3)如果颗粒污泥中混有大量的絮状污泥,由于絮状污泥的裹挟作用会造成微细颗粒污泥的流失,因此,在运行颗粒污泥反应器时一定要把反应器中的絮状污泥逐步分阶段淘洗干净厌氧反应器可以用于污水处理、固废处理、饲料加工和生产可再生能源等方面。

浙江新型厌氧反应器设计规范,厌氧反应器

EGSB PLUS厌氧反应器的特点:EGSB PLUS是在传统EGSB的基础上进行优化创新,提高处理效率的高效厌氧反应器。通过外循环为反应器提供充分的上升流速,保持颗粒污泥床的膨胀和反应器内部的良好传质,提高反应器的处理效率。气液分离模块将沼气、水和污泥实现良好分离,沼气由顶部进入沼气输送系统,废水由出水管流入后续处理系统,厌氧污泥回流至污泥床。应用领域:适用于化工废水、淀粉废水、造纸废水、养殖废水、酒精废水和其他轻工食品等高浓度有机废水的处理。厌氧接触工艺的反应器是完全混合式的。武汉完全混合式厌氧反应器设计规范

IC反应器由于含大量的微生物,温度对厌氧消化的影响变得不再突出和严重。浙江新型厌氧反应器设计规范

产气负荷:厌氧反应器中产生的沼气以气泡的形式释放,气泡在向上运动的过程中,诸多小气泡还会合拼成大气泡。大小气泡在上升运动的过程中,会对发酵液产生搅拌作用。这种搅拌作用有利于污泥与有机废水的混合与接触,对强化传质起着重要的作用。随着沼气产量的增加,搅拌作用也加剧,传质速率加快。所以产气负荷是污泥与废水有机物之间传质的又一种重要的推动力,这一推动力的大小可以用表面产气负荷来衡量。产气负荷是指厌氧反应器单位横切面积上、每小时释放的沼气量。产气负荷可用下式计算:R=Q/A。式中R为表面产气负荷,m3/(m2·h);Q为单位时间内反应器的沼气产量,m3/h;A为反应器横切面积,m2。浙江新型厌氧反应器设计规范

信息来源于互联网 本站不为信息真实性负责