北京上流式厌氧反应器
厌氧反应器处理的四个阶段:即厌氧消化过程分为水解阶段、酸化阶段、产乙酸产氢阶段、产甲烷阶段四个部分。水解阶段:微生物菌体分泌胞外水解酶,将碳氢化合物、脂肪和蛋白质转化为单糖、氨基酸和长链脂肪酸(LCFA);酸化阶段:水解阶段的产物在酸化微生物菌群的作用下降解为戊酸、丁酸、丙酸、乙酸、二氧化碳和氢;产乙酸产氢阶段,功能微生物菌群将戊酸等转化为甲烷细菌可以直接利用的基质-乙酸、二氧化碳和氢;在的产甲烷阶段,产甲烷细菌将乙酸、氢与二氧化碳转化为甲烷和二氧化碳,并伴随着微生物的生长与衰亡,在此同时,系统内的硫酸盐或硝酸盐在硫酸盐还原菌或反硝化菌的作用下,以乙酸或氢作为电子供体,被还原成硫化氢或氮气。折流板厌氧反应器结构简单、效果稳定。北京上流式厌氧反应器
厌氧反应器
CSTR PLUS是在传统CSTR的基础上进行优化创新,提高处理效率的高效厌氧反应器,专为含有高浓度可生物降解悬浮物的有机废水的处理而设计,可将水中的溶解性有机污染物(BOD、COD)和可生物降解的固体悬浮物(如油脂、淀粉等SS)转化为绿色能源——沼气,实现沼气产量的至大和废水处理成本的至低。 CSTR PLUS可以承受非常高的COD和SS浓度,分别可达100g/L和80g/L。CSTR PLUS可以在较短的停留时间中降解污染物,产生沼气,停留时间只为6~15天(传统厌氧消化为20~30天)。上海第三代厌氧反应器厂家典型的ASBR运行周期包括四个阶段。
水力负荷:泵进水时所提供的水力,是污泥与废水中有机物之间传质的重要推动力。水力可以促进污泥与有机废水的混合与接触,水力所产生的推动力的大小,可用表面水力负荷来衡量。水力负荷是指在反应器单位横截面积上、每小时的进水量,即:R水=Q/A。式中:R水为表面水力负荷,m3/m2·h或m/h;Q为反应器每小时的进水量,m3/h;A为反应器横切面积,m2。水力负荷的计量单位是m3/(m2·h),即m/h,所以水力负荷又称上升流速。上升流速的物理意义是,进水量在反应器中每小时上升的高度。上升流速越大,推动污泥与废水混合接触的搅拌力越大。
内循环厌氧反应器(IC反应器)内循环产生的过程:①当沼气产量很少时,进入提升管内的沼气会以小气泡的形式从提升管内的发酵液中逸出,此时不能提升发酵液,不能形成内循环。在IC反应器启动运行的初期,因反应器的容积负荷较低,沼气产量较少,发酵液得不到提升,更不会出现发酵液连续的内循环;②随着反应器容积负荷的上升、沼气产量的增加,提升管内的发酵液会出现阵发性的提升和间断性的内循环;③随着反应器容积负荷继续上升,进入提升管内的沼气量也逐渐增多,提升管内发酵液的容重逐渐下降。当进入提升管内的沼气量增加到一定程度后,使提升管内发酵液的容重下降到某一临界值时,会出现连续的提升与循环。开始出现连续内循环时的沼气产量称为沼气小临界产量;④当沼气产量继续增加,提升管内发酵液的容重继续下降,发酵液的提升量也随之而增加,从此进入发酵液连续提升与循环的阶段;⑤如果反应器的容积负荷和沼气产量继续增加,管内发酵液的容重继续下降,沼气会阵发性地从提升管中冲出,所提升的水量减少,循环量下降。这时使连续提升与循环遭到破坏时的沼气产量称为沼气比较大临界产量。可见,沼气产量太少或太多,都会影响到连续循环的正常进行。IC厌氧反应器由5个基本部分组成。
颗粒污泥形成的条件:根据一些研究成果和厌氧反应器运行的实践经验,我们虽然还不能充分揭示颗粒污泥形成的全貌,但可以断言,颗粒污泥的形成必须具备三个基本条件:(1)接种物中要有颗粒污泥的原始核粒;颗粒污泥的形成,要有一个适合微生物附着生长的原始核粒作为颗粒污泥生长的核。(2)反应器要有较高的水力负荷;高水力负荷和高产气负荷推动发酵液流动时所产生的剪切力,是形成颗粒污泥的原动力。(3)要具备合适的营养条件;颗粒污泥的生长需要较多样和丰富的营养物质。折流板厌氧反应器拥有良好的生物分布。广东反循环厌氧反应器厂家
IC PLUS厌氧反应器出水稳定性好。北京上流式厌氧反应器
厌氧处理有其自身的诸多优点,但也有不足之处,其中比较明显一点为经厌氧处理后的废水不能直接实现达标排放:有机废水经厌氧处理后,出水的COD值一般都比较高。只通过单一的厌氧处理很难直接达到排放标准,通常还要对厌氧出水进行后续的好氧处理或者物化处理,才能实现达标排放。一般来说,厌氧处理通常只能用于处理COD<2000mg/L的有机废水。即便它们的COD去除率相同,但厌氧出水COD的数值还是高于好氧出水的COD数值。如果它们处理同样浓度的有机废水,厌氧处理的效率不一定逊于好氧处理。但现在的问题在于,用厌氧方法处理COD<1500mg/L的有机废水,还不是十分的经济。北京上流式厌氧反应器
上一篇: 广东EGSB厌氧反应器报价
下一篇: 山东UASB厌氧反应器装置