DLinMC3DMA脂质体载药小动物

时间:2024年11月13日 来源:

为了***免疫性疾病,将针对甘油醛3-磷酸脱氢酶(***DH)的siRNA与含1,2-dilinoleyl-4-(2-dimethylaminoethyl)-[1,3]-dioxolane、DSPC和胆固醇的阳离子脂质体络合。用该复合物(5mg/kgsiRNA)处理小鼠,4天后,腹腔巨噬细胞和树突状细胞的***DH表达量减少40%,脾源性抗原呈递细胞的***DH表达量减少60%。在其他研究中,将重链铁蛋白特异性siRNA与阳离子脂质体结合,并局部给药于荷U251细胞的人胶质瘤小鼠。**内注射铁蛋白特异性siRNA与DC-Chol和DOPE组成的阳离子脂质体复合物,其抑制**生长的程度与卡莫司定(一种主要用于胶质瘤***的DNA烷基化剂)相当。argonaute-2特异性siRNA已被证明可诱导细胞凋亡,使用由DC-6-14、DSPC、DOPE和DSPC-PEG2000组成阳离子脂质体递送argonaute-2特异性siRNA时发现,将这些复合物静脉注射到接种Lewis肺*的小鼠体内(每隔一天1mg/kg,共5次),这些复合物可降低**组织中argonaute-2的表达,并***抑制**生长。脂质体的载药率怎么计算。DLinMC3DMA脂质体载药小动物

DLinMC3DMA脂质体载药小动物,脂质体载药

。NLC的设计方法是在室温下将少量脂质液体引入SLN中,降低脂质**的结晶度。NLC结晶度的降低抑制了药物从基质中的排出,增强了纳米颗粒的载药能力和物理和化学长期稳定性。SLN和NLC由脂类和稳定剂(如表面活性剂和其他涂层材料)组成。典型的脂类成分如所示,包括脂肪酸、脂肪醇、甘油酯和蜡。表面活性剂位于脂质-水界面,降低了脂质和水相之间的界面张力,提高了所得配方的稳定性。SLN和NLC通常采用各种有机无溶剂方法生产,如高压均相法Nization、高速搅拌、超声、乳状液/溶剂蒸发、双乳、相转化、溶剂非层状脂质纳米颗粒。其他类型的LNP结构也被研究用于药物输送。纳米脂质体载药靶向肽一些常用于标记脂质体的荧光染料包括:DiO、DiI、Rhodamine PE、NBD、BODIPY、Cy3和Cy5等。

DLinMC3DMA脂质体载药小动物,脂质体载药

脂质体制备方法:溶剂注射技术这种技术是将脂质物质和亲脂物质溶解在与⽔混溶的有机溶剂中,然后将有机相注⼊⼤量的⽔缓冲液中,从⽽⾃发形成⼩的单层脂质体。在其他改进的⽅法中,通过管状(例如Shirasu多孔玻璃膜或中空纤维结构)中的y型连接器和膜接触器注⼊/注⼊两流溶液装置,以改善有机相与⽔相的微混合。溶剂在⽔相介质中迅速扩散,界⾯湍流导致⼩⽽均匀的脂质体形成。根据制备条件的不同,可以制备80nm⾄300nm之间的粒径,并且不需要额外的能量输⼊来减⼩粒径,例如超声和挤压。应使⽤蒸发、冻⼲、透析或滤除有机溶剂,并将脂质体悬浮液浓缩⾄所需体积。⼄醇由于其安全性,通常被⽤作有机溶剂。各种制备参数,包括流速、溶剂和⽔溶液的温度、脂质浓度以及搅拌速率,都会影响颗粒的性质。Arikayce采⽤“⼄醇输注”或“在线输注”的⽅法制备阿⽶卡星脂质体。通过y型连接器和在线混合器将**少量的脂质⼄醇溶液和硫酸阿⽶卡星⽔溶液混合,形成纳⽶级的阿⽶卡星脂质体。

脂质体疫苗通常在已知疫苗中使用纯化抗原或减毒病原体作为免疫原。然而,长期的免疫反应可能不会由纯化抗原诱导,甚至有时根本不会诱导反应。另一方面,减毒疫苗可以在免疫的患者中产生应答。然而,递送包裹在脂质体内的抗原可诱导长期应答,这在某些抗原的直接免疫中没有观察到。研究表明,恶性细胞的细胞膜可以形成包封潜在抗原的脂质体。文献报道了包封在脂质体中的肽作为**疫苗的***应用能力。有研究评估了BLP25(一个含有合成人MUC1肽的25个氨基酸序列)作为**疫苗的能力。用二硬脂酰磷脂酰胆碱、胆固醇和二肉豆醇酰磷脂酰甘油(摩尔比3:1:25)中含有的单磷脂酰脂A(1%w/w)制备脂质体,然后与脂偶联和非偶联的MUC1肽结合。C57BL/6小鼠免疫分别采用肽相关脂质体、肽与无肽脂质体混合、脂肽单独免疫。结果表明,脂质体制剂对免疫应答有深远的影响。与物理相关的脂质体观察到强烈的免疫反应(抗原特异性t细胞细胞反应),而与肽混合的无肽脂质体或单独的脂肽则没有。体液免疫反应受到关联性质的***影响,这可以通过表面暴露的肽脂质体诱导muc1特异性抗体来证明。因此可以通过调整脂质体药物传递系统来诱导优先细胞反应这提出了一个假设即不同的脂质体配方刺激不同的免疫途径。脂质体的缓释作用可以减少给药频率。

DLinMC3DMA脂质体载药小动物,脂质体载药

脂质体质量控制脂质体的质量控制是确保其制备过程中符合一定标准和规范的重要步骤,主要包括以下几个方面:1.原材料质量控制:对用于制备脂质体的原材料进行严格的质量控制,包括磷脂质、胆固醇、表面活性剂、PEG衍生物等。确保原材料的纯度、稳定性和符合规定的质量标准。2.制备工艺参数控制:控制制备脂质体的生产工艺参数,包括溶剂的选择、温度、搅拌速度、pH值等。这些参数的调节能够影响脂质体的形态、大小、分布和稳定性。3.产品特性测试:对制备好的脂质体产品进行一系列的特性测试,包括粒径分布、形态观察、稳定性测试、药物载荷量和释放特性等。这些测试可以评估脂质体的质量和性能是否符合规定标准。4.微生物污染控制:严格控制制备过程中的微生物污染,采取合适的无菌操作和消毒措施,确保脂质体产品的无菌性和安全性。5.质量标准建立:建立完善的脂质体产品质量标准,包括原材料标准、生产工艺参数标准、产品特性标准等,以确保产品质量的稳定性和一致性。通过以上质量控制措施的实施,可以保证脂质体产品具有良好的质量和性能,从而更好地满足药物输送等应用的需求。由于AS-ODNs可以下调某些RNA并抑制靶蛋白的表达,因此它们被认为具有作为核酸药物的潜力。DOTMA脂质体载药靶向肽

脂质体的Zeta电位的重要性。DLinMC3DMA脂质体载药小动物

脂质体共价连接药物-脂质偶联载***式通过连接剂将药物分⼦与脂质共价连接是另⼀种在脂质体内装载药物的有效策略,例如Mepact。MDP是主要⾰兰⽒阳性菌细胞壁的组成部分,具有****应答的作⽤。

柔红霉素利⽤铜(gulconate)2/TEA负载⽅法在脂质体内主动积累。柔红霉素通过脂质双分⼦层扩散到脂质体内,⽽中性形式的TEA则渗透到脂质体外,在柔红霉素和TEA外排之间建⽴了动⼒学和化学计量学关系。Cu(葡糖酸盐)2/TEA在与这两种药物相互作⽤中起关键作⽤,保持药物在脂质体内的保留并调节药物从脂质体中的释放。 DLinMC3DMA脂质体载药小动物

信息来源于互联网 本站不为信息真实性负责