国内ultima2PPLUS双光子显微镜荧光探测
光学显微镜和电子显微镜本质的区别在于,光学显微镜:用的是可见光电子显微镜:用的是高频电子射波有什么区别,在于一个基本的原理,光的衍射。。。光波是一个有趣的东西,其中有一项,如果物体的体积小于光的波长,光一般可以绕过去,不发生明显变化。也就是说,有这个物体和没这个物体,在这种情况下,光是不会发生明显改变的。可见光的波长(肉眼):380~780纳米,也就是,如果比380纳米还要小的东西,用光学显微镜,无论你放大多少倍,也是看不见的。因为光绕过去了。。。光的衍射为了克服这个问题,科学家用波长更短的光去照射物体,也是就被观测物。比如10纳米级的光,这样,就能看到我们用肉眼无论如何都看不见的东西。这就是电子显微镜多说一句,光速是不变的。光速=频率×波长。波长越短,频率越大。。频率越大,光波的能量越大。这就是为什么电子显微镜的功率越大,能看到的东西越小。颜色取决于物体能反射光的波长的长短当你看到的物体小于较小可见光的波长,那它就是没有颜色的。。。因为颜色是肉眼对于可见光频率在大脑中的投影。。。。所以只能把他们统一变为黑白。。。没有颜色不是透明的意思,它们不是肉眼可见颜色的定义中包含的。双光子显微镜在组织透明化成像中应用。国内ultima2PPLUS双光子显微镜荧光探测
在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为“参考波前”。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以“分解”得到被调制的每一块子区域的“光线”的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。国内2PPLUS双光子显微镜成像原理双光子显微镜的应用中,该如何选择以及更好的使用PMT。
通过对显微光学系统的重新设计,将FHIRM-TPM2.0的成像视场扩展至420×420平方微米,显微物镜的工作距离扩展至1mm,实现无创成像。嵌入可拆卸的快速轴向扫描模块,实现深度180微米的三维体成像和多平面快速切换的实时成像。该模块由一个快速电动变焦镜头和一对中继镜头组成,在不同深度成像时保持放大率恒定。其中,变焦模块重1.8克,科研人员可以根据实验要求自由拆卸。此外,新型微型成像探头可以瞬间插拔,极大简化了实验操作,避免了长时间实验对动物的干扰。反复装卸探针追踪同批神经元时,视场旋转角度小于0.07弧度,边界偏差小于35微米。
指示剂是如何负载细胞,目前有三种在神经元上填充钙离子指示剂的方法,且都可以用于体内和体外研究。第一种方法是利用玻璃吸管将膜渗透性盐或葡聚糖形式的指示剂注入单个神经元中。此方法方便实验者控制单个神经元内的钙离子指示剂浓度且信噪比较高。第二种是利用“批量加载”的方法将钙离子指示剂染料负载神经元,观察对象为一群神经元。尽管此方法可能导致一些胶质细胞也被指示剂所标记,但明显提高了整体神经元的标记百分比,使研究者得以观察到一群神经元内动作电位相关性的活动。第三种也较为常用,通过病毒转染的方式使其基因编码钙离子指示剂。(A)单细胞注射法;(B)networkloading法;(C)通过病毒转染使其基因编码钙离子指示剂(expressionofgeneticallyencodedcalciumindicators,GECI)这种双光子显微镜的视场是普通显微镜的10倍。
在传统宽场显微镜中,来自标本不同纵深的光线都可投射到同一焦平面(感光元件)上,所以其成像是整个样品的重叠像,没有纵向分辨能力。单光子激光共聚焦显微镜用针空有效滤除了杂散光,分辨率有了本质上的提高,拥有了对样品的特定焦平面精细成像的能力,可以进行三维成像、动态成像等。然而,针空在滤除杂散光的同时也将大部分来自焦平面的荧光滤除了,只有很弱的荧光到达检测器。若要提高信号强度,需要加大激发光功率,这又会导致对活细胞的光毒性和荧光分子的光漂白增加。双光子显微镜蕞大的优势来源于其双光子光源的非线性光学效应,与单光子共聚焦显微镜蕞大的不同在于无须使用针空限制光学散射,其具体优势如下所述。双光子显微镜放大倍数是多少?美国双光子显微镜授权商
双光子显微镜在组织透明化成像中应用;国内ultima2PPLUS双光子显微镜荧光探测
Itrytoexplainwhytwo-photonmicroscopyhasadeeperimagingdepththanone-photonmicroscopy,intheareaofbiomedicalimaging.Manyofthebiomedicalimagingmodalities,nomatterone-photon(confocal)ormulti-photon(two-photon),uselasersaslightsourceandrequirecompatiblefluorescentdyes.Fluorescentdyeshavetheirownexcitationwavelength,andtheycaneitherbeexcitedbyasinglephotonwiththephotonenergyofthatexcitationwavelength(E=hv=h*c/λ);orbytwophotons,arrivingalmostatthesametime,buteachwithapproximatelyhalfoftheenergy,henceofdoublewavelengththanone-photon(0.5E->2λ).Theformeristheprincipleofone-photonmicroscopyandthelatteristheprincipleoftwo-photonmicroscopy.Whenimagingthesamefluorescentdye,sincetwo-photoncoulduseapproximatelydoubledwavelengthcomparedwithsingle-photon,two-photoncanobviouslypenetrateddeeperintothetissueduetolessscattering(longerwavelength,lessscattering).国内ultima2PPLUS双光子显微镜荧光探测
上一篇: 宁波钙成像nVista3.0
下一篇: 深圳在体钙成像grain lens