北京高焦耳压敏电阻MOV

时间:2023年09月16日 来源:

压敏电阻的工作原理:当加在压敏电阻上的电压低于它的阈值时,流过它的电流极小,它相当于一个阻值无穷大的电阻。也就是说,当加在它上面的电压低于其阈值时,它相当于一个断开状态的开关。当加在压敏电阻上的电压超过它的阈值时,流过它的电流激增,它相当于阻值无穷小的电阻。也就是说,当加在它上面的电压高于其阈值时,它相当于一个闭合状态的开关。压敏电阻具有堆成的伏安特性曲线,可用于交变的电源保护,一般用于AC输入交流电源的防雷保护。压敏电阻的响应速度比气体放电管快,比TVS管稍慢一些。北京高焦耳压敏电阻MOV

    压敏电阻的失效模式有三种:一是劣化,表现为泄漏电流增加,压敏电阻电压下降,直至为零。如果过电压引起的浪涌能量过大,超过了所选变阻器限值的承载能力,变阻器抑制过电压时会出现陶瓷爆裂现象。第三种穿孔,如果峰值过电压特别高,压敏电阻的大多数故障模式都会退化。解决方法是在使用变阻器时,将合适的断路器或熔断器串联在变阻器上,以避免短路引起的事故。总之,当变阻器吸收浪涌时,它会崩溃,当电压降低时,它的工作电流会过大,直到烧坏;如果发生爆裂(封装层破裂,引线与陶瓷体分离),电路将断开,导致保护失效;如果短路,它会烧坏。当变阻器的使用环境或湿度过高时,变阻器会恶化(崩溃电压降低),使其工作电流过大,直到烧坏或短路。当变阻器的工作电压超过额定工作电压时,变阻器会劣化(崩溃电压会降低),使其工作电流过大,直到烧坏或短路为止。 北京高焦耳压敏电阻MOV压敏电阻具有低压、中压、高压之分。

压敏电阻的特性:压敏电阻的特性我们顾名思义,压敏,对电压很敏感。我们使用的时候,也是在特殊的场景下来使用的。比如一个471的压敏电阻,471的压敏,电阻他的电压敏感点就是在47*10^1=470V这个点,如果,471这颗压敏电阻,两端的电压,低于470V压敏电阻的内阻非常非常大,相当于开路一样。假设Vcc=12V,如果压敏电阻使用了471的压敏电阻.在正常工作的时候,压敏电阻基本不会有电流的,因为此时压敏电阻阻抗太大了,那么几乎没有电流的话,压敏没有工作。那么,压敏既然在常态下,都没有去工作,那么我们为何要加上他呢?

压敏电阻是大家都会经常用的一款电阻器,那么对于压敏电阻发展历史你们有所了解吗?为此小编跟大家科普一下这方面的知识。一起进入本文的主题吧!1929~1930年,美国和德国几乎同时用碳化硅压敏材料制成高压避雷器。40年代末,苏联制成低压碳化硅压敏电阻器。1968年日本研制出氧化锌压敏材料。这种材料具有比其他材料更为优异的电气性能,至今仍获得广泛应用。其他金属氧化物(Fe2O3、tiO等)压敏电阻器也得到发展。目前压敏电阻在各类电源设备被使用。 跨电源线用压敏电阻器区分为交流用或直流用两种类型,压敏电阻在这两种电压应力下的老化特性表现不同。

ZnO压敏电阻的电性能ZnO压敏电阻**重要的是其非线性的I-V特性,如图所示2.3,从功能上看,在电压值达到称为击穿电压或阀值电压的数值以前,压敏电阻接近于绝缘体;而在电压值超过这个数值以后就成为导体。使ZnO压敏电阻设计人员感兴趣的电性能是:在导电状态的非线性或者叫非欧姆性,以及稳态工作电压下的漏电流很小,观看一下曲线上三个重点的区段,对ZnO压敏电阻的这些特点就可以更明显了。曲线可以划分为三个阶段:预击穿区、非线性区、上升区。高能型:指用于吸收发电机励磁线圈,起重电磁铁线圈等大型电感线圈中的磁能的压敏电压器。北京高焦耳压敏电阻MOV

5D压敏电阻脚间距一般为5.0mm。北京高焦耳压敏电阻MOV

在压敏电阻器的应用过程中,当其出现性能劣化时,常见的劣化模式有两种,第一种是开路模式,第二种是短路模式。开路模式主要发生在MOV流过远远超出自身承受的浪涌电流时,通常表现为压敏电阻本体炸裂,但这种模式不会引起燃烧现象。短路模式大体上可分为老化失效和暂态过电压破坏两种类型。首先我们来看压敏电阻器的老化失效问题。这一问题主要指的是电阻体的低阻线性逐步加剧,此时漏电流将会恶性增加且集中注入薄弱点,导致薄弱点材料融化,形成一千欧左右的短路孔后,电源继续推动一个较大的电流灌入短路点,形成高热而起火。北京高焦耳压敏电阻MOV

信息来源于互联网 本站不为信息真实性负责