徐州LEM电流传感器

时间:2023年12月27日 来源:

磁芯的材料影响测量误差,不同的磁芯材料所能承受的环境温度不同。因此,磁芯材料与参数的选择至关重要。电流传感器有多种类型,如霍尔传感器、无磁芯电流传感器、高导磁非晶合金多谐振荡电流传感器、电子自旋共振电流传感器等。下面对磁芯材料的选取要求与各个参数的影响进行分析。(1)较高磁导率的软磁材料。磁导率反映缠绕绕组的磁芯在通入电流后的导磁能力;磁导率越高,导磁能力越好。为了提高磁通门传感器的灵敏度,需选择高磁导率磁芯。这是因为选择高磁导率磁芯使磁芯两端的电压幅值更大,从而对小电流更敏感。因此,尽可能的选择较高磁导率的软磁材料,这样在保证灵敏度的同时保证了磁芯探头的稳定性。(2)低磁滞伸缩性的磁芯材料。磁性物质受磁场的影响发生弹性形变,这种现象被称为磁滞伸缩效应。选择低磁致伸缩性的磁芯材料可使磁芯的磁性性能更佳,进而减少了磁通门传感器的相对误差。(3)最高工作温度。在磁芯材料的选择方面,必须满足高温工作状况的要求,选择居里温度点高的磁芯材料。(4)低矫顽力的磁芯材料。因磁芯的矫顽力越大导致磁滞回线的面积增大,而磁芯磁滞回线的面积反应磁滞损耗的大小,因此选择HC较小的磁芯,减少磁滞损耗。将一次电流中的直流和交流分量分通道单独检测研制了四铁芯六绕组交直流电流比较仪。徐州LEM电流传感器

徐州LEM电流传感器,电流传感器

根据初始条件iex(t1)及终止条件iex(t2)可以求得时间间隔t2-t1为:t2-t1=τ2ln(2-12)在t2≤t≤t3期间,电路初始条件iex(t2)仍满足式(2-11),且此时铁芯C1工作由线性区A转入正向饱和区B,激磁电感减小为l,铁芯C1回路电压满足,vex=VOH=Vout。此时回路电压方程为:Vout=iex(t)*Rsum+l(2-13)在形式上式(2-13)与式(2-5)一致,因为此时铁芯均进入饱和区工作。两者所讨论的激磁振荡时刻不同,即一阶线性微分方程的初始条件和终止条件均不相同。由初始条件式(2-11)与一阶线性微分方程(2-13)可得t2≤t≤t3期间,激磁电流iex表达式为:t-t2t-t2--iex(t)=IC(1-eτ1)-(-Ith-βIp1)eτ1金华漏电保护电流传感器哪家便宜纳吉伏研发的磁通门电流传感器具有高灵敏度、低噪声、宽频响等优点。

徐州LEM电流传感器,电流传感器

磁通门探头的磁通变化由激励电流以及初级被测电流的共同变化得出,引入了闭环结构,由于被测初级电流上的存在引起电感值变化,应用闭环原理进行检测以及补偿,补偿电流Zs输入到传感器的次级线圈中,使得开口处场强为0,电感返回至一个参考值。初级电流和次级电流的关系就会由匝数比很明确的给出来。无锡纳吉伏提出了一种紧凑式结构的磁通门传感器,该结构减少了一个磁芯, 应用套环式双磁芯,内部环形磁芯及缠绕在其上的反馈以及激励线圈与初级线圈应用积分反馈式磁通门电流传感器测量方式。外部环绕着反馈线圈的环形磁芯与初级线圈构成电流互感器用以测量高频交流电。这一结构的提出进一步减小了测量探头的体积及功耗。但是却是以付出精确度为代价的,因为套环式结构外部磁芯通过的磁场要远远小于通过内部磁环的,这样会影响电流互感器的测量精度;另外,单磁环无法解决磁通门原理中的变压器效应带来的影响。

假设初始状态输出电压 VO 在 t=0 时刻 VO=VOH 。根据电阻分压关系可得电路的正反 馈系数 ρ=R1/(R1+R2) ,且运放同相端电压 V+=ρVOH 。此时运放反相端电压 V-=V+=ρVOH, 在 0~t1 时刻,对非线性电感 L 进行正向充电,充电电流大小受到电阻分压及采样电阻 RS 限制,充电电流从 0 开始增大,最大值为 Im=ρVOH/RS。在 0~t1 期间,铁芯 C1 工作点 始终在线性区 A,线性区激磁感抗 ZL 较大, 激磁电流 iex 缓慢增长到正向激磁电流阈值 Ith ,此时铁芯 C1 工作点开始进入正向饱和区 B。电流传感器探头是由磁芯、被测绕组和激励绕组组成。

徐州LEM电流传感器,电流传感器

红色曲线为 0.05 级交流电流互感器比差和角差误差限值曲线, 黄色曲线为 50A 直流下交流比差和角差误差曲线,黑色曲线为 20A 直流下交流比差和 角差误差曲线。 由 5-7 ,5-8 可知,在 20A 及 50A 直流分量下, 新型交直流电流传感 器比差角差无明显变化, 仍满足 0.05 级交流误差限值,所设计的新型交直流电流传感器 可完成不同直流分量下交流电流高精度测量。无锡纳吉伏研制的新型交直流电流传感器单独测量 0~600 A  交流分量、测量 0~300A 直流分量时,电流测量误差均小于 0.05 级电流互感器误差限值;在交直流同时 作用的情况下,交流分量对直流计量性能无明显影响, 直流分量对交流计量性能也无明 显影响, 交流和直流测量精度均未发生变化。由于电流的变化速度很快,对电流传感器的带宽要求很高。泰州莱姆电流传感器案例

用于直流电流精密测量的直流比较仪结构以及交直流精密测量的交直流电流比较仪结构也是在此基础上发展而来。徐州LEM电流传感器

反馈绕组匝数 NF 越大,终端测量电阻 RM 阻值越小, 新型交直流电流传感器稳态误差越小, 但式(3-20)忽略了反馈绕组的线电阻, 当匝数 较大时, 线电阻不可忽略。因此本文在设计选择较大匝数反馈绕组后, 选择阻值较小的 终端测量电阻 RM  阻值以减小新型交直流电流传感器稳态误差。同时综合考虑反馈电流 峰值、温度特性等,选择大功率低温度系数的电阻。在对交直流电流传感器的误差传递函数模型建立时, 为了简化计算并未考虑新型交 直流传感器的磁性误差及容性误差。铁芯器件的磁性误差主要原因是绕组设计的不 对称性, 铁芯的漏磁通,外部的电磁干扰等其他因素导致的磁通不对称,主铁芯磁通不 对称性导致了一二次磁势平衡的假平衡现象, 终导致测量误差。因此设计绕组时需要 选择均匀缠绕, 对于多层绕组需要采取特殊绕法以减小铁芯漏磁通大小。徐州LEM电流传感器

热门标签
信息来源于互联网 本站不为信息真实性负责