广州金属纳米力学测试原理
FT-NMT03纳米力学测试系统可以配合SEM/FIB原位精确直接地测量纳米纤维的力学特性。微力传感器加载微力,纳米力学测试结合高分辨位置编码器可以对纳米纤维进行拉伸、循环、蠕变、断裂等形变测试。力-形变(应力-应变)曲线可以定量的表征纳米纤维的材料特性。此外,纳米力学测试结合样品架电连接,可以定量表征电-机械性质。位置稳定性,纳米力学测试对于纳米纤维的精确拉伸测试,纳米力学测试系统的位移是测试不稳定性的主要来源。图2展示了FT-NMT03纳米力学测试系统位移的统计学评价,从中可以找到每一个测试间隔内位移导致的不确定性,例如100s内为450pm,意思是65%(或95%)的概率,纳米力学测试系统在100s的时间间隔内的位移稳定性小于±450pm(或±900pm)。通过纳米力学测试,可以测量材料的硬度、弹性模量、粘附性等关键参数。广州金属纳米力学测试原理
2005 年,中国科学院上海硅酸盐研究所的曾华荣研究员在国内率先单独开发出定频成像模式的AFAM,但不能测量模量。随后,同济大学、北京工业大学等单位也对这种成像模式进行了研究。2011 年初,我们研究组将双频共振追踪技术用于AFAM,实现了快速的纳米模量成像(一幅256×256 像素的图像只需1~2min),并对其准确度和灵敏度进行了系统研究。较近几年,AFAM 引起了越来越多国内外学者的关注。然而,相对于其他AFM 模式,AFAM 的测量原理涉及梁振动力学和接触力学,初学者不容易掌握。纳米力学动态测试技术纳米力学测试技术的发展为纳米材料在能源、环保等领域的应用提供了更多可能性。
微纳米材料研究中用到的一些现代测试技术:电子显微法,电子显微技术是以电子显微镜为研究手段来分析材料的一种技术。电子显微镜拥有高于光学显微镜的分辨率,可以放大几十倍到几十万倍的范围,在实验研究中具有不可替代的意义,推动了众多领域研究的进程。电子显微技术的光源为电子束,通过磁场聚焦成像或者静电场的分析技术才达成高分辨率的效果、利用电子显微镜可以得到聚焦清晰的图像, 有利于研究人员对于实验结果进行观察分析。
目前微纳米力学性能测试方法的发展趋势主要向快速定量化以及动态模式发展,测试对象也越来越多地涉及软物质、生物材料等之前较难测试的样品。另外,纳米力学测试方法的标准化也在逐步推进。建立标准化的纳米力学测试方法标志着相关测试方法的逐渐成熟,对纳米科学和技术的发展也具有重要的推动作用。绝大多数的纳米力学测试都需要复杂的样品制备过程。为了使样品制备简单化和人性化,FT-NMT03采用能够感知力的微镊子和不同形状的微力传感探针针尖来实现对微纳结构的精确提取、转移直至将其固定在测试平台上。总而言之,集中纳米操作以及力学-电学性能同步测试功能于一体的FT-NMT03能够满足几乎所有的纳米力学测试需求。纳米力学测试可以帮助解决材料在实际使用过程中遇到的损伤和磨损问题。
本文中主要对当今几种主要材料纳观力学与纳米材料力学特性测试方法:纳米硬度技术、纳米云纹技术、扫描力显微镜技术等进行概述。纳米硬度技术。随着现代材料表面工程、微电子、集成微光机电 系统、生物和医学材料的发展试样本身或表面改性层厚度越来越小。传统的硬度测量已无法满足新材料研究的需要,于是纳米硬度技术应运而生。纳米硬度计是纳米硬度测量的主要仪器,它是一种检测材料微小体积内力学性能的测试仪器,包括压痕硬度和划痕硬度两种工作模式。由于压痕或划痕深度一般控制在微米甚至纳米尺度,因此该类仪器已成为电子薄膜、涂层、材料表面及其改性的力学性能检测的理想手段。它不需要将表层从基体上剥离,便可直接给出材料表层力学性质的空间分布。纳米力学测试可以用于评估纳米材料的热力学性能,为纳米材料的应用提供参考依据。湖北新能源纳米力学测试应用
通过纳米力学测试,我们可以评估纳米材料在极端环境下的稳定性和耐久性。广州金属纳米力学测试原理
特点:能同时实现SEM/FIB高分辨成像和纳米力学性能测试,力学测量范围0.5nN-200mN(9个数量级),位移测量范围0.05nm-21mm(9个数量级),五轴(X,Y,Z,旋转,倾斜)闭环控制保证样品和微力传感探针的精确对准,能在SEM/FIB较佳工作距离下实现高分辨成像(可达4mm)以及FIB切割和沉积,五轴(X,Y,Z,旋转,倾斜)位移记录器实现样品台上多样品的自动测试和扫描,导电的微力传感探针可有效减少荷电效应,能够通过力和位移两种控制模式实现各种力学测试,例如拉伸、压缩、弯曲、剪切、循环和断裂测试等,电性能测试模块能够实现力学和电学性能同步测试(样品座配备6个电极)导电的微力传感探针可有效减少荷电效应,实现力学性能测试与其他SEM/FIB原位分析手段联用,如EDX、EBSD、离子束沉积和切割,兼容于SEM本身的样品台,安装和卸载快捷方便。广州金属纳米力学测试原理
上一篇: 广州平头金刚石压头厂商
下一篇: 四川科研院纳米力学测试设备