黑龙江GFP-LC3单荧光自噬

时间:2022年05月07日 来源:

有学者报道,150~250 μmol/L白藜芦醇处理C33A、HeLa、CaSki、SiHa、CaLo细胞48 h后,使细胞阻滞在G1期,诱导细胞凋亡,且通过增加C33A、CaLo和HeLa细胞溶酶体通透性诱导细胞自噬,表明白藜芦醇对不同细胞的敏感性不同,诱导不同程度的细胞自噬。另外,柴胡皂苷d通过增加细胞质游离Ca2+浓度水平,激huoCaMKK[1]AMPK-mTOR通路诱导HeLa 细胞自噬性死亡。白藜芦醇可通过抑制Akt/mTOR/p70S6K/ 4E-BP1,激huop38-MAPK通路诱导T细胞急性淋巴细胞白血病细胞自噬。另外二氢青蒿素(DHA)通过增加LC3-II蛋白的量诱导铁超负荷介导的白血病K562细胞自噬。融合、降解与回收:完全形成的自噬体与溶酶体在细胞内相融合。黑龙江GFP-LC3单荧光自噬

有研究表明,一种携带TSLC1抑病基因的溶瘤腺病毒可靶向Wnt信号通路使瘤细胞发生细胞自噬、凋亡等从而抑制瘤生长,可延长小鼠模型的生存期,该研究则从基因层面调控了瘤代谢。自噬在肝病的发生的发展中发挥重要作用,但其影响呈双面性。自噬的诱导和抑制在肝病免疫治理中均取得了一定进展,但其作用机制并不完全明确,取决于很多因素,可能和肝病的分化、病程分期等有关。并且,自噬的调控机制在肝病发生的发展的不同阶段可能起到不同的作用,如何调控自噬,减少肝病发生,并且促进细胞进入自噬死亡程序,已经成为瘤预防和治理研究的新热点。广州自噬小体剧烈运动下的自噬会增加生长因子,从而加速肌肉修复。

自噬(Autophagy),即细胞“吃掉自己”的过程,是一种细胞自我降解和循环利用胞内组分的过程。常见的自噬过程有三种类型:巨自噬、微自噬和分子伴侣介导的自噬。在现代的生物学中,“自噬”的概念是由比利时生物化学家克里斯汀·德·迪夫(ChristiandeDuve)在研究溶酶体功能时首先提出的。尽管克里斯汀·德·迪夫因发现和阐明溶酶体的功能获得了诺贝尔生理和医学奖,但是细胞自噬的具体机理是由日本生物学家大隅良典阐明的。大隅良典也因对细胞自噬的研究获得了诺贝尔生理和医学奖。自噬方面,P53通过转录依赖和非依赖机制发挥调节作用。

溶酶体的作用还包括对细胞内物质的消化,溶酶体能消化分解经胞吞作用摄入细胞内的各种物质和细胞内衰亡或损伤的各种细胞器等。吞噬性溶酶体内的各种大分子在水解酶的作用下,可以被分解为简单物质。例如,能将蛋白质分解为二肽或游离氨基酸;把核酸分解为核苷和磷酸;使碳水化合物分解为寡糖类或单糖;将中性脂肪分解为甘油和脂肪酸等。这些被分解而生成的可溶性小分子物质,能透过溶酶体体膜进入细胞质基质,重新参与细胞的物质代谢,一些未被完全消化的物质残留下来,形成残余小体。在乳腺病、前列腺病及结肠病细胞中阻止自噬,能够提高病变细胞对放化疗的敏感性。

线粒体自噬属于选择性自噬,其主要作用是降解细胞中损伤以及不需要的线粒体。当线粒体损伤之后,在正常的线粒体中持续被降解的PINK蛋白(PARL促进此反应)会处于稳定状态,再通过E3连接酶Parkin的作用来诱导线粒体自噬。Parkin会诱导线粒体膜蛋白的聚泛素化,由此导致与LC3结合的自噬受体蛋白的SQSTM1/p62,NBR1,andAmbra1聚集。此外,在特定的细胞类型中,同样存在LC3结合区域(LIR)的BNIP3和BNIP3L/NIX直接通过泛素依赖型反应机制也会聚集自噬反应的相关因子,进而促进自噬体的形成。推动关系中自噬并不直接参与诱导细胞死亡,而是作为能量供应者保障凋亡顺利进行。山西单荧光自噬

自噬可影响细胞因子的产生、趋化作用等。黑龙江GFP-LC3单荧光自噬

自噬通过分解并清理受损的蛋白质和细胞器来达到清洁细胞的效果,该过程对于神经元等寿命较长的细胞来说十分重要,由于神经元不再能够进行细胞分裂,因此特别容易积聚对自身有害的蛋白质和受损的细胞器。在他们的新研究中,科学家表明,老鼠大脑中的神经元不需要自噬就可以存活。此外,这些神经元细胞通过自噬相关蛋白来调节对学习和记忆至关重要的分子微管转运过程。自噬对大脑的健康至关重要,这一事实得到了近十年来科学发现的支持。科学家发现自噬的新功能表明,对患者自噬活性的诊治性调节不只可以促进脑部废物清理,还可以通过改变细胞内转运系统的效率来改变认知能力。自噬是普遍存在于真核细胞的现象,并且可分为巨自噬、微自噬和分子伴侣介导的自噬三大类。黑龙江GFP-LC3单荧光自噬

信息来源于互联网 本站不为信息真实性负责