微米级超精密MLCC

时间:2024年11月19日 来源:

20世纪60年代为了适应核能、大规模集成电路、激光和航天等技术的需要而发展起来的精度极高的一种加工技术。到80年代初,其加工尺寸精度已可达10纳米(1纳米=0.001微米)级,表面粗糙度达1纳米,加工的小尺寸达 1微米,正在向纳米级加工尺寸精度的目标前进。纳米级的超精密加工也称为纳米工艺(nano-technology) 。超精密加工是处于发展中的跨学科综合技术。20 世纪 50 年代至 80 年代为技术开创期。20 世纪 50 年代末,出于航天等技术发展的需要,美国率先发展了超精密加工技术,开发了金刚石刀具超精密切削——单点金刚石切削(Single point diamond turning,SPDT)技术,又称为“微英寸技术”,用于加工激光核聚变反射镜、战术导弹及载人飞船用球面、非球面大型零件等。激光超精密加工可分为四类应用,分别是精密切割、精密焊接、精密打孔和表面处理。微米级超精密MLCC

超精密

超精密加工技术是指加工精度达到亚微米级甚至纳米级的制造技术,主要包括超精密车削、磨削、铣削和电化学加工等方法。这些方法能够实现对硬脆材料、难加工材料和功能材料的精确加工,适用于光学元件、微型机械、生物医疗器件等领域。常见的超精密加工方法有:1.超精密车削:使用金刚石刀具进行加工,能够实现对非球面和自由曲面的高精度加工。2.超精密磨削:采用超硬磨料磨具,适用于加工硬质合金、陶瓷等高硬度材料。3.超精密铣削:利用金刚石或立方氮化硼刀具,适用于复杂形状零件的高精度加工。4.超精密电化学加工:通过电解作用去除材料,适用于加工微细、复杂结构的零件。超精密加工技术的发展对提高我国制造业的国际竞争力具有重要意义。自动化超精密医疗器械零件超精密加工中的微细加工技术是指制造微小尺寸零件的加工技术。

微米级超精密MLCC,超精密

现有物理打磨技术,接触式加工,磨损基石,需要切削油, 加工后需要清洗,异形件打磨和局部打磨有难度。纳秒激光打磨有以下问题:产生细微裂纹,熔化-再凝固产生热变形, 表面物性发生变化, 周围会产生多个颗粒。飞秒激光打磨:改善现有打磨技术的问题 -热影响极小,可以局部打磨,异形件打磨,不需要化学药剂  -细微裂纹极少化  表面物理特性变化少,在不改变物性值的情况下,提高表面粗糙度。 高功率激光打磨:测量高度→获取高度数据→转换成面数据→去除表面凸起  中等功率,利用中等功率激光可以刻画  低功率时具有,清洗效果;抛光效果(也有去除微孔边缘毛刺的效果) 抛光后,[A O I(自动光学检查)]  对孔不良进行检测(手动或自动) (光学相机扫描仪)材料的边缘测量和修正材料位置误差。非常适合异形件打磨、抛光。局部打磨抛光。

超精密加工主要包括三个领域:超精密切削加工如金刚石刀具的超精密切削,可加工各种镜面。它已成功地解决了用于激光核聚变系统和天体望远镜的大型抛物面镜的加工。超精密磨削和研磨加工如高密度硬磁盘的涂层表面加工和大规模集成电路基片的加工。超精密特种加工如大规模集成电路芯片上的图形是用电子束、离子束刻蚀的方法加工,线宽可达0.1µm。如用扫描隧道电子显微镜(STM)加工,线宽可达2~5nm。超精密加工是指亚微米级(尺寸误差为0.3~0.03µm,表面粗糙度为Ra0.03~0.005µm)和纳米级(精度误差为0.03µm,表面粗糙度小于 Ra0.005µm)精度的加工。实现这些加工所采取的工艺方法和技术措施,则称为超精加工技术。加之测量技术、环境保障和材料等问题,人们把这种技术总称为超精工程。激光超精密切割的加工特点是速度快,切口光滑平整,一般无需后续加工;切割热影响区小,板材变形小。

微米级超精密MLCC,超精密

刀片/刀具/(BLADE / CUTTER/ KNIFE)微泰生产和供应用于 MLCC 的各种工业刀具,包括垂直刀片、刀轮刀具、修剪刀片和镜头刀具。 我们拥有制造刀片的自主技术,并拥有使用飞秒激光的切割机边缘校正技术,飞秒激光抛光技术,实现了无比锋利和提高使用寿命。刀锋(刀刃)的无凹痕、无缺陷的边缘。通过自动化检测设备进行管理,并以很高水平的光照度和直度进行管理。应用MLCC切割,相机模块+垂直刀片,刀轮切割器,镜头浇注口修整刀片、透镜切割器。特别是塑料镜头浇注口切割刀片占韩国市场90%以上。当精密加工已无法达到更好的形状精度、表面粗糙度与尺寸精度时,就会需要使用到超精密加工的技术。半导体加工超精密精密喷嘴

激光超精密加工质量的影响因素少,加工精度高,在一般情况下均优于其它传统的加工方法。微米级超精密MLCC

美国是早期研制开发超精密加工技术的国家。早在1962年,美国就开发出以单点金刚石车刀镜面切削铝合金和无氧铜的超精密半球车床,其主轴回转精度为 0.125µm,加工直径为Ø100mm的半球,尺寸精度为±0.6µm,粗糙度为Ra0.025µm。1984年又研制成功大型光学金刚石车床,可加工重1350kg,Ø1625mm的大型零件,工件的圆度和平面度达0.025µm,表面粗糙度为Ra0.042µm。在该机床上采用多项新技术,如多光路激光测量反馈控制,用静电电容测微仪测量工件变形,32位机的CNC系统,用摩擦式驱动进给和热交换器控制温度等。美国利用自己已有的成熟单元技术,只用两周的时间便组装成了一台小型的超精密加工车床(BODTM型),用刀尖半径为5~10nm的单晶金刚石刀具,实现切削厚度为1nm (纳米)的加工。尽管如此,美国还是继续把微米级和纳米级的加工技术作为国家的关键技术之一,这足以说明美国对这一技术的重视。微米级超精密MLCC

信息来源于互联网 本站不为信息真实性负责