变频输出电抗器报价

时间:2024年12月25日 来源:

并联电抗器避免发电机带空载长线路出现自励磁过电压。当发电机经变压器带空载在长线路启动,空载发电机全电压向空载线路合闸,发电机带线路运行线路末端甩负荷等,都将形成较长时间发电机带空载线路运行,形成了一个L-C电路,当空载长线路电容C的容抗值Xc合适时,能导致发电机自励磁(即L-C回路满足谐振条件产生串联谐振)。自励磁会引起工频电压升高,其值可达1.5~2.0倍的额定电压,甚至更高,它不仅使并网的合闸操作(包括零起升压)成为不可能,且其持续发展也将严重威胁网络中电气设备的安全运行。并联电抗器能大量吸收空载长线路上的容性无功功率,破坏发电机自励磁条件。交流电抗器。主要用于过滤高频电流,以避免干扰电网。变频输出电抗器报价

变频输出电抗器报价,电抗器

交流电抗器可以分为两类:交流电抗器和DC电抗器。先说交流电抗器。它们的功能主要是抗干扰。例如,在一些工作电压较高的交流电路中,为了更好地避免电气设备产生的高次谐波造成的“污染”,一般在电气设备的进线端安装交流电抗器。它是一个三相线圈绕在一个三相铁芯上,这个线圈的线径要足够粗,因为是普通的。在选择交流电抗器时,我们重点考虑电感,应根据流过电抗器的电流不超过额定电流的3%来选择。比如30KW的电机,允许电流为60A,那么交流电抗器的电感应为032mH并联电抗器厂当电抗器需要检修、更换或调试时,需要对其进行放电处理,以保证操作人员的安全。

变频输出电抗器报价,电抗器

直流电抗器串联在换流站每一极上。电感大约0.4~1.0H。它的主要作用如下:(1)防止逆变器换流失败。(2)降低直流线路里的电压和电流谐波。(3)降低纹波系数。(4)限制线路短路时整流器中的电流。但要注意:电感的取值必须保证工频时直流电路不发生谐振。直流电抗器可将功率因数提高到0.9以上。由于其体积较小,因此许多变频器已将直流电抗器直接安装在变频器内。直流电抗器除了提高功率因数外,还可削弱电源刚接通瞬间的冲击。如果同时配有交流电抗器和直流电抗器,则可将变频调速系统的功率因数提高到0.95以上。

如果变频器出线距离超过30米,可能需要考虑安装电抗器。当变频器和电机的距离在100米以上时,建议安装电抗器以保护设备。在不同的应用场景下,变频器和电机的距离可以有不同的分类:近距离(20米以内):变频器和电机之间可以直接连接3中距离(20米至100米):虽然可以直接连接,但可能需要进行一些调整,如调整变频器的载波频率来减少谐波及干扰。远距离(大于100米):除了需要调整变频器的载波频率外,还必须加装输出交流电抗器。需要注意的是,具体的电抗器容量和型号应根据系统的具体情况来确定。此外,不同品牌和型号的变频器可能有不同的处理方法和规定距离,因此建议参考变频器说明书以获取更准确的信息。电抗器分为:电流电抗器,并联电抗器,通信电抗器,消弧电抗器,启动电抗器,电炉电抗器,滤波电抗器。

变频输出电抗器报价,电抗器

电抗器的作用有:1、抑制浪涌,在大功率电力电子电路中,合闸瞬间,会产生很大的冲击电流(浪涌电流),浪涌电流虽然作用时间短,但峰值却很大。比如,电弧炉、大型轧钢机,大型开关电源,UPS电源,变频器等,开机浪涌电流往往超过正常工作电流的100倍以上,在输入侧串接电抗器,能有效的抑制这种浪涌电流;2、抑制谐波电流,随着电力电子技术的广泛应用,电网中增加了大量的非线性负载,比如,AC-DC电源,UPS,变频器等,它们都是以开关方式工作,这些以开关方式工作的用电设备,往往变成了谐波电流的发生源,“污染”电网,使电网电压波形畸变,谐波的危害之一便是中心线过载发热燃烧,电抗器的接入,能有效抑制谐波污染。电抗器主要是用来起到限制短路电流的作用。浙江定制电抗器大约多少钱

电抗器主要平衡电压,确保各相之间的电压差异小化。变频输出电抗器报价

干式电抗器绝缘材料表面开裂、进水受潮也是设备损坏的主要原因。绝缘材料开裂一方面是因为生产厂家采用的环氧树脂配方有问题,导致绝缘材料在户外紫外线、潮气条件下容易老化;另一方面是因为导线材料与绝缘材料的膨胀系数不一致。干式空心电抗器主要由2种材料构成:导线(铝线)和包封绝缘材料。干式空心电抗器一般采用铝线做载流导线,而铝线的机械加工性能较差,同等直径的铜、铝材料的性能差别较大,铝导线的膨胀率是铜导线的1.43倍,而铜导线的抗拉强度是铝导线的2.5倍。干式空心电抗器在绕制过程中,导线要承受一定的拉紧力,固化成型后,整个结构硬而脆,电抗器投运后,导线会发热并发生热胀,停电后又会冷却收缩。干式空心电抗器频繁的投切过程,易引发导线疲劳,如果此时导线抗拉强度偏低、蠕变特性不良就容易发生断裂,进而造成局部过热、匝绝缘损伤。导线与绝缘材料的膨胀系数不一致,干式空心电抗器频繁的投切,还会造成包封开裂、线圈进水受潮,进而导致匝间绝缘故障。变频输出电抗器报价

热门标签
信息来源于互联网 本站不为信息真实性负责