仪器仪表QPQ粗糙
达克罗表面处理技术是一种防腐蚀涂层技术,主要用于金属制品的表面保护。它采用化学镀的方法,将一层具有防腐蚀性能的无机镀层均匀地覆盖在金属表面。这种镀层主要由超细鳞片状锌、铝和铬等组成,由于片状锌、铝层状重叠,阻碍了水、氧等腐蚀介质与钢铁零件的接触,同时在达克罗的处理过程中,铬酸与锌、铝粉和基体金属发生化学反应,生成致密的钝化膜,这种钝化膜具有很好的耐腐蚀性能,该工艺对螺栓固件的应用较广。该技术主要用于防腐蚀保护,而膜层本省的硬度不高,不具备一定强度的耐磨性。而工研所QPQ技术在提高金属制品的表面硬度和耐磨性的同时,依靠表面的氧化膜和氮化物层可大幅度提高工件的防腐能力,它更多地用于提高金属制品的硬度和耐磨性以及防腐性。成都工具研究所有限公司的QPQ表面处理技术可以提高刀具的加工精度。仪器仪表QPQ粗糙
QPQ表面复合处理技术是一种针对金属表面的处理工艺,能够有效提高材料表面硬度、耐磨性和抗疲劳性能,并且因工艺、设备简单易行而被广泛应用。利用QPQ盐中的有效组分在合金钢表面发生分解、吸附、扩散,从而改变合金钢表面化学成分及相组成以提高合金钢表面性能。然而,高温长时间的工艺条件易造成工件变形,组织粗化以及对不锈钢耐蚀性的降低。因此,工研所研发出了可在低温进行表面处理的新一代QPQ表面处理技术,化合物渗层由原有的15~20μm增加到30~40μm以上。气门QPQ金相QPQ表面处理可以显著提高刀具的硬度和耐磨性。
45钢为碳素结构用钢,硬度不高易切削加工,模具中常用来做模板、梢子、导柱等,但须热处理。45钢本身的硬度大概在197HV左右,工研所常规QPQ处理后硬度值为650HV,深层QPQ处理后的硬度值可达1000HV,45钢本身易生锈,常规QPQ处理后的平均生锈时间是85.3h,深层QPQ处理后的生锈时间延长至151.3h。所以45钢经过工研所QPQ技术处理后,特别是深层QPQ处理后,试样可以获得较高的表面硬度和良好的表面渗氮组织,同时试样具有良好的耐磨性,在较低载荷的试验条件下,随着载荷的增加试样的摩擦系数可以保持一定的稳定性。
在工研所QPQ技术的日常生产中,QPQ盐的质量对工件表面的化合物层特性,包括深度、硬度以及疏松级别,具有至关重要的影响。其中,基盐中的氰酸根浓度是一个关键指标,其精确控制是QPQ技术质量控制流程中的重要环节。为了准确检测并调整基盐中的氰酸根含量,经典的甲醛定氮法被广泛应用。这一方法需要精心配制甲基红和亚甲基蓝的混合指示剂,以确保在加入酸碱时能够精确控制反应进程。随后,通过加入过量的甲醛,溶液中的氨态氮会被转化为氢离子。在酚酞指示剂的作用下,利用氢氧化钠对转化后的氢离子进行滴定。通过记录滴定过程中消耗的氢氧化钠量,可以精确地推算出基盐中氰酸根的浓度。这一检测与调整过程不仅确保了QPQ处理中盐的质量,也为工件表面形成高质量化合物层提供了有力保障,从而进一步提升了工件的整体性能和使用寿命。QPQ表面处理可以改善刀具的表面光洁度,减少切削时的摩擦阻力。
工研所的QPQ表面复合处理技术与传统的热处理方法相比,工研所的QPQ表面复合处理技术在处理过程中的零件不会发生形变,能够保持零件原有的形状和尺寸;QPQ技术生产效率高,可快速完成对零件的表面处理,这对于生产周期短、持续高效的产线来说非常重要;QPQ技术处理后的零件具有优良的稳定性,能够长时间保持良好的性能,这使得QPQ处理后的零件在各种工况下都能够持续稳定地工作,提高了零件的使用寿命;QPQ技术适用于各种类型的金属零件,能够满足不同领域的零件处理需求,这使得QPQ技术在各个领域都有着广泛的应用前景;同时,处理后的零件表面光滑度高,不需要额外的抛光工艺,节省了生产成本,提高了生产效率;经过QPQ表面处理的刀具具有更好的切削稳定性和切削精度。气门QPQ金相
QPQ表面处理可以改善刀具的表面硬度分布。仪器仪表QPQ粗糙
磷化处理时通过在金属表面形成一层磷化物膜来防止金属与外界环境中的氧气、水和其它化学物质接触,从而提高金属的耐腐蚀性能。然而磷化处理过程可能会产生一些有害物质,例如废水和废气中的重金属离子和硝酸盐,这对环境造成一定的污染。工研所QPQ技术是一种热处理表面改性技术,在工艺上是热处理技术和防腐技术的复合,在渗层组织上是氮化物层和氧化物层的复合,在渗层性能上是耐磨性和防腐性的复合。经过硫酸铜溶液腐蚀、露天放置以及盐雾试验进行耐蚀性能的比较,发现经过工研所QPQ处理的工件耐蚀性更优,同时工研所QPQ技术在生产过程中产生的废气、废水、废渣经处理后均满足国家标准。仪器仪表QPQ粗糙
上一篇: 防腐QPQ替代离子渗氮
下一篇: 活塞环QPQ替代高频淬火