广东脱氮价格
倒置A2/O工艺,与常规的A2/O工艺相比,倒置A2/O工艺(见图2)从前往后以此为缺氧-厌氧-好氧,该工艺的设计初衷是为了降低污泥回流中硝态氮对厌氧释磷的影响,特别是对于高氨氮废水污泥回流中携带有大量的硝氮,抑制厌氧释磷反应。同时,为了解决碳源分配的问题,采用两点进水的方式来提供厌氧释磷中有机物的消耗。该工艺由于硝态氮在前端的缺氧池中完全反硝化,消除了硝氮对厌氧释磷的不利影响,从而保证厌氧释磷的稳定进行,并且聚磷菌释磷后直接进入生化效率比较高的好氧环境,使其在厌氧条件下形成的吸磷动力得到了更有效的利用。脱氮设备的更新换代与维护保养对设备运行效率具有重要影响。广东脱氮价格
废水生物除磷的方法,按照磷的较终去除方式和构筑物的组成,除磷工艺流程可分为主流程除磷工艺和侧流程除磷工艺。主流除磷工艺的厌氧段在处理污水的水流方向上,磷的较终去除通过剩余污泥排放,典型的方法有厌氧/好氧(A/O)工艺,其他方法有厌氧/缺氧/好氧(A/2O)工艺、Phoredox工艺、UTC工艺、VIP工艺以及SBR工艺、氧化沟工艺等。侧流工艺的厌氧段不在处理污水的水流方向上,而是在回流污泥的侧流上,具体方法是将部分含磷回流污泥分流到厌氧段释放磷,再用石灰沉淀去除富磷上清液中的磷。湖北废水脱氮反应脱氮设备的运行维护需要注意周期性的检修和保养。
生物脱氮除磷(Biological Nutrient Removal,简称BNR)是指用生物处理法去除污水中营养物质氮和磷的工艺。经过几十年的发展,脱氮除磷工艺演变出了多种工艺和工艺变种,为我们选择污水处理技术路线,提供了很多种选项。反硝化过程,反硝化过程是反硝化菌异化硝酸盐的过程,即由硝化菌产生的硝酸盐和亚硝酸盐在反硝化菌的作用下,被还原为氮气后从水中溢出的过程。反硝化过程主要在缺氧状态下进行,溶解氧的浓度不能超过0.2mg/L,否则反硝化过程就要停止。反硝化也分为两步,头一步由硝酸盐转化为亚硝酸盐,第二步由亚硝酸盐转化为一氧化氮、氧化二氮和氮气。
生物脱氮的工艺控制:消化过程(硝化菌)的影响因素:温度:硝化反应的较适宜温度范围是30一35℃,温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性。温度低于5℃,硝化细菌的生命活动几乎完全停止:在5一35℃的范围内,硝化反应速率随温度的升高而加快;但达到30℃后,蛋白质的变性会降低硝化菌的活性,硝化反应增加的幅度变小。对于同时去除有机物和进行硝化反应的系统,温度低于15℃时硝化速率会迅速降低。低温对硝酸菌的抑制作用更为强烈,因此在12~14℃的系统中会出现亚硝酸盐的积累。畜牧养殖污染脱氮技术对于处理养殖废水中的氮污染具有重要作用。
反硝化,生物的反硝化作用是指污水中硝酸盐在缺氧条件下被微生物还原成氮气的一个反应过程。1.生物反硝化的机理,生物反硝化是指污水中的硝态氮( NO3- -N ) 和亚硝态氮 ( NO2--N ) 在无氧或低氧条件下,被微生物还原为 N2 的过程,反硝化菌是大量存在污水中的异养型兼性细菌,主要是变形补菌、假单胞菌、小球菌、芽孢杆菌、无色杆菌属、嗜气杆菌属、产碱杆菌属等,这些菌属在无氧条件下,同时存在硝酸和亚硝酸离子时,能利用这些离子中的氧进行呼吸,反硝化又叫脱氮反应或硝酸呼吸。2.反硝化的工作原理,化学反应式:NO2- + 3H+ (电子供给体-有机物)= 1/2N2 + H2O + OH-,NO3- +5H+ (电子供给体-有机物)= 1/2N2 + 2H2O + OH-,反硝化过程中 NO2- 和 NO3- 的转化,是通过反硝化细菌的同化作用(合成代谢)和异化作用(分解代谢)来完成。 同化作用是NO2-和NO3- 被还原转化为NH3-N, 用于微生物细胞合成,氮成为细菌细胞的组成部分。脱氮可以提高水体中溶解氧的含量,增强水生生物的生存环境。浙江生物脱氮滤池
脱氮方法包括SCR、SNCR、低氮燃烧等。广东脱氮价格
生物脱氮的基本条件:(1)硝酸盐:硝酸盐的生成和存在是反硝化作用发生的先决条件,必须先将污水中的含氮有机物如蛋白质、氨基酸、尿素、脂类、硝基化合物等转化为硝酸盐氮。(2)不含溶解氧:反应器中的氧都将被有机体优先利用,从而减少反应器能脱氮的亚硝酸盐量,溶解氧超过0.2 mg/L时没有明显脱氮作用。(3)兼性菌团:多数情况下,细菌普遍具有脱氮习性,污水处理的微生物脱氮时在好氧和缺氧条件下反复交替,其中以兼性菌团为主。(4)电子供体:生物脱氮的能量来自脱氮过程中起电子供体作用的碳质有机物,脱氮时污水中有机物必须充足,否则需要投加甲醇、乙醇、乙酸等外部碳源。广东脱氮价格