智能振动声学指纹在线监测监测系统内容

时间:2024年08月31日 来源:

变压器振动主要包括OLTC切换时的瞬态振动、电流通过绕组时电动力引起的绕组振动、硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动、以及冷却装置工作时的振动。其中,由冷却系统引起的基本振动频率小于100Hz,不作为变压器的分析内容。变压器内部的声纹振动信号通过绝缘油、支撑单元、加强筋结构等多种途径传播至变压器外壁,可由安装于外壁的声纹振动传感器测得。OLTC切换过程中,分接选择器动作、切换开关动作、动静触头碰撞等机械动作产生声纹振动信号,信号包含触头分合状态、三相触头是否同期、触头表面是否平整、切换是否到位等信息,可反映OLTC结构磨损、卡滞、松动、变形等故障。切换过程中若储能弹簧性能发生改变或储能过程中存在机构卡塞等现象,必然伴随着电机驱动力矩的变化,从而使驱动电机电流发生变化。因此,可通过监测驱动电机电流信号与声纹振动信号的结合分析,可更加有效的评价OLTC在线运行状态下的健康态势评价与故障类型诊断。变压器运行时,电流通过绕组时产生的电动力引起绕组振动,硅钢片的磁致伸缩及GZAF-1000T系列变压器(电抗器)振动声学指纹监测设备信息管理。智能振动声学指纹在线监测监测系统内容

智能振动声学指纹在线监测监测系统内容,振动声学指纹在线监测

3.1技术原理变压器振动主要包括OLTC切换时的瞬态振动、电流通过绕组时电动力引起的绕组振动、硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动、以及冷却装置工作时的振动。其中,由冷却系统引起的基本振动频率小于100Hz,不作为变压器的分析内容。变压器内部的声纹振动信号通过绝缘油、支撑单元、加强筋结构等多种途径传播至变压器外壁,可由安装于外壁的声纹振动传感器测得。

OLTC切换过程中,分接选择器动作、切换开关动作、动静触头碰撞等机械动作产生声纹振动信号,信号包含触头分合状态、三相触头是否同期、触头表面是否平整、切换是否到位等信息,可反映OLTC结构磨损、卡滞、松动、变形等故障。切换过程中若储能弹簧性能发生改变或储能过程中存在机构卡塞等现象,必然伴随着电机驱动力矩的变化,从而使驱动电机电流发生变化。因此,可通过监测驱动电机电流信号与声纹振动信号的结合分析,可更加有效的评价OLTC在线运行状态下的健康态势评价与故障类型诊断。 智能振动声学指纹在线监测监测系统内容杭州国洲电力科技有限公司简介。

智能振动声学指纹在线监测监测系统内容,振动声学指纹在线监测

五、GZAFV-01系统的操控及监测数据分析软件5.1远端后台软件管理远端后台管理软件通过云服务器账户登录,选择管理对象。5.2设备信息管理设备信息管理界面包括设备名称、位置、编号等基本信息。5.3软件主界面主界面包括项目管理、多通道信号同步显示、分析及其他工具及基本分析结果显示,可实现信号包络、重合度比对、能量分布、时域信号频谱分布等分析。5.4包络分析声纹振动及驱动电机电流的信号包络分析可简化信号,直观反映设备运行状态。5.5历史数据比对实现实时监测数据与正常状态数据横向比对、与历史状态数据纵向比对。5.6频谱分析进行声纹振动监测数据的时域信号频谱分析,提取信号频域特征参量。5.7运行状态告警被测变压器的异常状态报警,可选择告警发送方式。5.8报表生成功能:被测变压器诊断结果生成报表功能。

3.2.1感知层的传感器GZAFV-01系统的感知层如上图3.1所示,由IED/主机、6路声纹振动传感器、1路电流传感器等构成,声纹振动传感器集成电荷放大器,将声纹振动信号转换成与之成正比的电压信号;电流传感器采用微型卡扣结构,便于现场安装。各传感器外观及参数如下表1所示。◆3路声纹振动传感器采集取OLTC振动信号,通过固定底座安装在变压器外壁,安装位置选取平行于OLTC的垂直传动杆方向,且尽量靠近OLTC的触头组处。◆1路电流传感器采集OLTC驱动电机电流信号,安装于OLTC驱动电机电源线处。◆3路声纹振动传感器采集变压器绕组及铁芯声纹振动信号,安装位置选取于上夹件底部、非冷却器侧油箱表面中部、油箱顶部中心点。为保持监测点的同一性,便于后期监测数据的时间轴线比对,所有声纹振动传感器底座长期固定在变压器外壁上。安装示意图如下图3所示。(备注:传感器安装的数量及位置可根据被测设备的监测需求而灵活调整)GZAF-1000T系列变压器(电抗器)振动声学指纹监测系统相关标准。

智能振动声学指纹在线监测监测系统内容,振动声学指纹在线监测

4.2.3根据各时频信号互相关系数、能量分布曲线特征参量(互相关系数、最大值、平均值、峰度、偏度)、ATF图谱特征参量(六等分区间均值)、总谐波畸变率、基频信号能量比等状态量,采用深度学习算法,自动判断变压器运行状态及机械故障类型。

4.2.4结合变压器的带电监测、智能巡检以及其他在线监测状态量,进行数据的多参量融合分析,形成基于多源数据的故障预警机制,多参量融合分析不仅提高了识别故障的准确性,而且还能**降低因单个参量判别故障带来的误报。例如,对于变压器疑似问题地诊断可结合负荷、损耗、绕组机械振动信号、油温、以及历史电流电压情况分析,在监测到变压器地声纹振动频谱时,GZAFV-01系统的操控及监测数据分析系统可以自动去查询变压器地历史电流和电压信号,如果发现在某段时期确实有大电流冲击,可给出预警:变压器可能存在绕组变形地异常。 GZAF-1000T系列变压器(电抗器)振动声学指纹监测技术交流与投运业绩。智能化振动声学指纹在线监测生产企业

GZAF-1000S系列高压开关振动声学指纹监测系统--GIS本体监测功能特性。智能振动声学指纹在线监测监测系统内容

确保采集到的振动和声学数据具有足够的准确性和分辨率,以便于识别设备的正常运行状态与异常情况,可以采取以下措施:

选择合适的传感器:根据被监测设备的特性和监测要求选择适当类型和规格的振动和声学传感器。传感器应具有高灵敏度和适当的频率响应范围。校准传感器:定期对传感器进行校准,以确保其输出与实际测量值之间的准确对应关系。优化采样频率:根据设备的动态特性和可能发生的故障类型,设置合适的采样频率,以捕捉到振动和声学信号的关键特征。减少噪声干扰:采取措施减少环境噪声和电磁干扰,如使用屏蔽电缆、设置隔振平台、选择低噪声环境进行测量等。数据预处理:采用滤波、去噪等数据预处理技术,提高信号质量,减少噪声的影响。多传感器融合:使用多个传感器并结合不同的测量位置,可以提高数据的冗余性和鲁棒性,从而增强信号的准确性。动态范围调整:根据设备的运行状态调整测量系统的动态范围,确保在设备运行在不同负载条件下都能获得清晰的信号。数据后处理和特征提取:应用高级信号处理技术,如时频分析、小波变换等,提取出反映设备状态的关键特征。 智能振动声学指纹在线监测监测系统内容

信息来源于互联网 本站不为信息真实性负责